化学自习室


按字母检索
学习小专题

数据词典

元素手册

元素周期表

假期高中化学辅导课程:

国家中小学课程资源高中化学在线课堂实录,涵盖必修第一册、必修第二册、选择性必修一、选择性必修二等课程模块,由名师分课时讲解,与课堂教学同步,可作为化学学习的先修课或复习巩固课。

学习方式:先预习课本,再观看课程视频,再结合学习同步资料如《步步高》中导学案或学习笔记巩固知识点,最后再结合课时作业进一步提高。

学习说明:点击图片即可直达。

《物质结构与性质》说理题答题模板

来源:未知作者:化学自习室 点击:所属专题: 答题模板 物质结构说理题

版权申明:凡是署名为“化学自习室”,意味着未能联系到原作者,请原作者看到后与我联系(邮箱:79248376@qq.com)!

1、高温陶瓷材料Si 3 N 4 晶体中键角N—Si—N > Si—N—Si(填“>”“<”“=”),原因是: N原子上有孤电子对,由于孤电子对与成键电子对的排斥力更大,使得Si—N—Si键角较

网站温馨提示,请您保护好眼睛!双击图片可放大! 【视力保护色 杏仁黄 秋叶褐 胭脂红 芥末绿 天蓝 雪青(默认色) 灰 银河白 字体:

1、高温陶瓷材料Si3N4晶体中键角N—Si—N Si—N—Si(填“>”“<”“=”),原因是:N原子上有孤电子对,由于孤电子对与成键电子对的排斥力更大,使得Si—N—Si键角较小。

2、某同学书写基态铜原子的价层电子排布式为3d94s2,该排布式违背了洪特规则特例。简单金属离子在水溶液中的颜色大多与价层含有未成对电子有关,Cu呈无色,其主要原因可能是价层无未成对电子。

3、NaBrO、NaBrO2、NaBrO3、NaBrO4四种钠盐中,Br的杂化方式均为sp3杂化,阴离子空间构型为三角锥形的是NaBrO3 (填化学式)。上述四种钠盐对应的酸的酸性依次增强,试解释HBrO4的酸性强于HBrO3的原因:HBrO3和HBrO4可分别表示为(HO)BrO2和(HO)BrO3,HBrO3中Br为+5价而HBrO4中Br为+7价。后者正电性更高,导致H、O之间的电子对向O偏移,更易电离出H

4、乙二胺分子(H2N—CH2—CH2—NH2)中氮原子杂化类型为sp3,乙二胺和三甲胺[N(CH3)3]均属于胺,但乙二胺比三甲胺的沸点高得多,原因是乙二胺分子间可以形成氢键,三甲胺分子间不能形成氢键。

5、碳酸盐在一定温度下会发生分解,实验证明碳酸盐的阳离子不同,分解温度不同,如下表所示:

碳酸盐

MgCO3

CaCO3

SrCO3

BaCO3

热分解温度/℃

402

900

1172

1360

阳离子半径/pm

66

99

112

135

试分析随着阳离子半径的增大,碳酸盐的分解温度逐步升高的原因:碳酸盐分解过程实际上是晶体中的金属阳离子结合CO32中的氧离子,使CO32分解为CO2 的过程,所以当阳离子所带电荷数目相同时,阳离子半径越小,其结合氧离子的能力就越强,对应的碳酸盐就越容易分解。

6、某同学用硫酸铜溶液与氨水做了一组实验,向硫酸铜溶液中滴加氨水生成蓝色沉淀,继续滴加氨水沉淀溶解,得到深蓝色透明溶液,最后向该溶液中加入一定量乙醇,析出[Cu(NH3)4]SO4·H2O晶体,请解释加入乙醇后析出晶体的原因:乙醇分子极性比水分子弱,加入乙醇后溶剂的极性减弱,溶质的溶解度减小。

7、比较Mn和Fe的电离能数据可知:气态Mn2+再失去一个电子比气态Fe2+再失去一个电子难。对此,你的解释是:Mn2+的3d轨道电子排布为半充满状态,较稳定;而Fe2+的3d轨道电子数为6,不是较稳定的状态。

8、检验K元素的方法是焰色反应,请用原子结构的知识解释产生此现象的原因:当基态原子的电子吸收能量后,电子会跃迁到较高的能级,变成激发态电子,电子从能量较高的激发态跃迁到较低能量的激发态或基态时,将以光的形式释放能量。

9、邻羟基苯甲醛的沸点比对羟基苯甲醛的沸点低,原因是:邻羟基苯甲醛形成分子内氢键,而对羟基苯甲醛形成分子间氢键,分子间氢键使分子间作用力更大。

10、H3O中H—O—H键角比H2O中H—O—H键角大,原因是:H2O中的氧原子有2对孤电子对,H3O中氧原子有1对孤电子对,排斥力较小。

11、HF和HCl在水中的溶解度HF 较大,原因是:HF与水分子之间能形成氢键,氢键的存在能增强物质在水中的溶解性,所以HF和HCl在水中HF的溶解度较大。

12、已知H2O 、NH3、CH4三种分子中,键角由大到小的顺序是CH4>NH3>H2O,请分析可能的原因:CH4分子中无孤对电子,NH3分子中含有1对孤对电子,H2O分子中含有2对孤对电子,对成键电子对的排斥作用依次增大,故键角逐渐减小。

13、NF3的键角NH3的键角(填“>”“<”“=”),理由是:F的电负性比H大,NF3中N周围电子云密度减小,成键电子对之间的排斥力较小,因而键角较小。

14、两种三角锥形气态氢化物膦(PH3)和氨(NH3)的键角分别为93.6°和107°,试分析PH3的键角小于NH3的原因:电负性N强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间的距离越小,成键电子对之间的斥力增大,键角变大。

15、Si、C和O的成键情况如下:

化学键

C—O

C=O

Si—O

Si=O

键能(kJ·mol-1)

360

803

464

640

C和O之间易形成含有双键的CO2分子晶体,而Si和O之间则易形成含有单键的SiO2原子晶体,请结合数据分析其原因为:碳与氧之间形成含有双键的分子晶体放出的能量(803kJ·mol-1×2=1606kJ·mol-1)大于形成含单键的原子晶体放出的能量(360kJ·mol-1×4=1440kJ·mol-1),故CO2易形成含双键的分子晶体;硅与氧之间形成含有双键的分子晶体放出的能量(640kJ·mol-1×2=1280kJ·mol-1)小于形成含单键的原子晶体放出的能量(464kJ·mol-1×4=1856kJ·mol-1),故SiO2易形成含单键的原子晶体。

16、金属铜单独与氨水或单独与过氧化氢都不反应,但可与氨水和过氧化氢的混合溶液反应,其原因是:过氧化氢为氧化剂,氨与Cu2+形成配离子,两者相互促进使反应进行。

17、尿素[CO(NH2)2]分子中N、O元素的第一电离能N>O,原因是:N元素的2p能级为半充满,是较稳定的结构,失去1个电子需要的能量多,所以第一电离能N>O。

18、丙酸钠(CH3CH2COONa)和氨基乙酸钠均能水解,水解产物有丙酸(CH3CH2COOH)和氨基乙酸(H2NCH2COOH),H2NCH2COOH中N原子的杂化轨道类型为sp3杂化,C原子的杂化轨道类型为sp3、sp2杂化。常温下丙酸为液体,而氨基乙酸为固体,主要原因是:羧基的存在使丙酸形成分子间氢键,而氨基乙酸分子中,羧基和氨基均能形成分子间氢键。

19、NH3常用作制冷剂,原因是:NH3分子间能形成氢键,沸点高,易液化,汽化时放出大量的热,所以能够做制冷剂。

20、Na和Ne互为等电子体,电离能I2(Na)> I1(Ne),原因是:Na和Ne电子排布结构相同,而Na比Ne的核电荷数大,因此Na原子核对核外电子的吸引力大于Ne原子核对核外电子的吸引力,所以Na更难失去电子,电离能更大。

21、已知硼酸(H3BO3)是一元酸,解释其原因:H3BO3与一个水分子可形成配位键,产生[B(OH)4]和一个H

(责任编辑:化学自习室)
用手机微信扫描以下二维码,可浏览、收藏、分享;若对您学习有帮助,请点击打赏图标,扫描二维码,赞助本站。
------分隔线----------------------------
数据统计中,请稍等!
------分隔线----------------------------
相关文章
说点什么吧
  • 全部评论(0
    还没有评论,快来抢沙发吧!
栏目列表
微信公众平台二维码
二维码图片
欢迎订阅网站动态,手机扫一扫就可以。
化学自习室APP下载二维码
化学自习室APP
欢迎使用化学自习室APP,扫码就可下载。
推荐内容
公益广告