【定义】由两种或两种以上的简单盐类组成的同晶型化合物,叫做复盐。
【说明】
1.复盐又叫重盐。复盐中含有大小相近、适合相同晶格的一些离子。例如,明矾(硫酸铝钾)是KAl(S04)2·12H20,莫尔盐(硫酸亚铁铵)是(NH4)2Fe(S04)2·6H20,铁钾矾(硫酸铁钾)是KFe(S04)2·12H20。
2.复盐溶于水时,电离出的离子,跟组成它的简单盐电离出的离子相同。例如,KAl(S04)2=K++A13++2SO42-
3.使两种简单盐的混合饱和溶液结晶,可以制得复盐。例如,使CuS04和(NH4)2S04的溶液混合结晶,能制得硫酸铜铵[(NH4)2S04 ·CuS04 ·6H20]。
4.由两种不同的金属离子和一种酸根离子组成的盐。例如硫酸铝钾[KAl(SO4)2],十二水合硫酸铝钾[KAl(SO4)2·12H2O]俗称明矾。明矾也可用化学式K2SO4·Al2(SO4)3·24H2O表示,是无色晶体,溶于水完全电离产生三种离子,Al3+水解形成Al(OH)3胶体,水溶液呈酸性。
Al(OH)3有很强的吸附能力,它吸附水中悬浮的杂质形成沉淀。因此,明矾可作净水剂,还可作收敛剂和媒染剂。
5.氯化镁钾[KMgCl3]也是复盐。自然界的KCl·MgCl2·6H2O,俗称光卤石,易溶于水。从光卤石可提取KCl和MgCl2。复盐和复盐的水合物都属于纯净物。
【结晶水合物】含有结晶水的固体物质,叫做结晶水合物。
说明
1.结晶水合物中的水分子是以确定量存在的,如FeCl3·6 H20、 FeS04·7 H2O、 Ba (OH) 2 · 8 H2O和ZnS04 ·7 H2O 等。因此,结晶水合物是纯净物。
2.水合物中的水分子有各种结合方式。一种是作为配位体,配位在金属离子上,叫配位结晶水。另一种结合在阴离子上,叫阴离子结晶水。例如,CuS04·5 H20加热到113℃,只失去4分子,加热到258℃才能脱去最后1分子水。由此推断,它的结构是[Cu(H2O)4]2+[S04(H20)]2-3.含有结晶水的物质叫做结晶水合物。又称水合物、水化物。如绿矾(FeSO4·7H2O)、二水合硫酸(H2SO4·2H2O)、六水合氯化铁(FeCl3·6H2O)等。除水合离子外,结晶水合物大多是晶态物质。结晶水合物在受热时会失去结晶水,并有显著的吸热效应。
【定义】主要以共价键结合形成的化合物,叫做共价化合物。
【说明】
1.不同种非金属元素的原子结合形成的化合物(如CO2、ClO2、B2H6、BF3、NCl3等)和大多数有机化合物,都属于共价化合物。在共价化合物中,一般有独立的分子(有名符其实的分子式)。通常共价化合物的熔点、沸点较低,难溶于水,熔融状态下不导电,硬度较小。
2.有些离子型化合物中也可能存在共价键结合。例如NaOH分子中既有离子键又有共价键。有些共价化合物中局部区域也可能包含离子键的成分,例如苯酚钠等。
3.以共价键结合的有限分子(即共价化合物分子),且靠分分子间范德华力作用而凝聚成的晶体,是典型的分子晶体,如CO2晶体、苯的晶体等。以共价键结合的无限分子形成的晶体属于共价型晶体或原子晶体,它是由处于阵点位置的原子通过共价键结合而成的晶体,如金刚石晶体、单晶硅和白硅石(SiO2)晶体。【定义】阳、阴离子之间通过离子键结合而形成的化合物为离子化合物。
【说明】
1. 离子化合物的形成可以用电子式表示:如氯化铵形成的电子式为:
2.离子化合物在室温下以离子晶体形式存在,不存在单个的离子化合物分子。NaCl、MgO、CaF2等实际上只是表示离子晶体中阳、阴离子个数的简单整数比和重量组成比的化学式,不是分子式。只有在气态时才有离子型分子。
3.离子化合物的熔点,与离子所带电荷、离子半径和离子的核外电子排布等结构特征有关。一般说来,阳、阴离子所带的电荷越多、离子半径越小,离子化合物的熔点越高。如果离子化合物的其他特征相同,则阳、阴离子的核间距越大,它们的熔点越低。
4.大多数离子化合物易溶于水,难溶于有机溶剂。离子化合物在水溶液中和在熔融状态下都有能自由移动的离子,因此能导电。
【定义】含有过氧基(一O一O一)的化合物叫做过氧化物。
【说明】
1.过氧化物中氧的氧化数是-l。过氧化物包括过氧化氢(H202)、金属过氧化物、过氧酸盐和有机过氧化物。过氧化物可以看作是过氧化氢的衍生物。
2.金属过氧化物只是碱金属和碱土金属中存在过氧化物,例如Na202、Ba02等。常见的过氧酸有过二硫酸及其盐、过二磷酸等。有机过氧化物有过氧乙酸、过氧化苯甲酰等。
3.过氧化物都是强氧化剂,加热时放出氧气,跟稀酸反应能生成过氧化氢。
Ba02+H2S04=H202+BaS04
【定义】氢跟其它元素组成的二元化合物。例如氢化钠、硫化氢、硼烷等。
【说明】
按其结构大致可分成三种类型:
1. 离子型氢化物(又叫盐型氢化物)碱金属和碱土金属中 的钙、锶、钡能跟氢气在高温下反应、,生成离子型氢化物,如NaH、 CaH2等,其中氢以H-离子形式存在。这类氢化物都是离子晶体,熔点较高,在熔融状态下能导电。它们都有强还原性,遇水分解,生成金属氢氧化物,并放出氢气。
2. 共价型氢化物(又叫分子型氢化物)氯化氢、氨、硫化氢、 甲烷等在常温下呈气态或液态,水在常温下呈液态。这类氢化物 性质差异较大,如HX、H2S溶于水时电离而显酸性,NH3溶于水 显碱性,CH4水不发生任何作用,SiH4发生反应:SiH4 + 4H20= H4Si04 + 4H2。
3. 金属型氢化物 铍、镁、铟、钛和d区、f区金属元素的单质都能跟氢生成金属氢化物,如BeH2、MgH2、FeH2、CuH等,还 有非整数比化合物,如VH0.56、ZrH1.92、PdH0.8等。金属型氢化 物保留金属的外观特征,有金属光泽,密度比相应金属小。据最新研究,金属型氢化物在有机合成及作储氢材料方面有重要用途。 例如,1体积钯可吸收700~900体积的氢气成为金属氢化物,加热后又释放出氢气。
【定义】由非金属元素组成的单质。非金属一般没有金属光泽,不是电和热的良导体,没有延性和展性。在通常情况下,非金属有的是固体,有的是气 体,只有溴是液体。非金属固体大多数是分子晶体,硬变小,熔点、沸点较低,但有的非金属固体属原子晶体,如金刚石、晶体硅等,它们的硬度大,熔点、沸点较 高。非金属元素的原子价电子较多,原子半径较小,在化学反应中倾向于得到电子。大多数非金属既具有氧化性,又具有还原性。金属与非金属没有严格界限,位于 周期表P区左上到右下对角线附近的元素,如硼、硅、锗、砷、锑、碲等既具有非金属的性质,又具有金属的性质,可把这些元素的单质称为准金属或半金属。
【说明】
1.非金属正好跟金属相反,一般无金属光泽,缺乏延展性,是电和热的不良导体。在通常状况下,非金属有的是固体,有的是气,只有溴是液体。非金属固体中金
刚石、晶体硅、晶体硼是原子晶体,熔点和沸点都很高:硬度也大。其他非金属固体属于分子晶体,熔点、沸点较低,硬度小。
2.非金属元素原子的价电子较多,在化学反应中倾向于得到电子,具有氧化性,容易跟金属化合。非金属元素之间相结合时,其中非金属性较弱的元素会部分失去电子,显示还原性,大多数非金属能跟氧结合成酸性氧化物。
3.非金属与金属之间没有严格的界限。例如硼、硅、锗、砷、锑、硒、碲等既有金属的性质,又有非金属的性质,有时把它们叫做半金属(也有叫做准金属)。
【定义】由金属元素组成的单质。具有金属光泽、不透明、有延性和展性、有良好的传热性和导电性的一类物质。在金属晶体中有中性原子、阳离子和自由电子,金 属具有上述性质,都与晶体中存在自由电子有关。常温下除汞外,都以固态形式存在。化学性质一般表现较强的还原性,由于金属元素原子的价电子较少,原子半径 较大,在反应中容易失去价电子成为阳离子的缘故。工业上通常把金属分为黑色金属和有色金属两大类。有色金属又可分成轻金属、重金属、贵金属和稀有金属等。
【分类】
1、黑色金属:通常是指铁、铬、锰和铁的合金(主要指钢铁)。在各种金属中,铁在地壳中分布较集中,储量较丰富,开采和冶炼较多,价格也较廉。铸铁和钢的品种和 规格很多,它们是工业上最广泛应用的金属材料,在国民经济中占有极重要的地位。铬与锰主要应用于制合金钢。铁、铬、锰及其合金都不是黑色的,而钢铁表面经 常覆盖着一层黑色的四氧化三铁。这样分类,主要是从钢铁在国民经济中的重要地位出发的。
2、有色金属:通常是指除铁、铬、锰和铁的合金以外的其它金属。可分为四类:(1)重金属,如铜、锌、铅、镍等。(2)轻金属,如钠、钙、镁、铝等。(3)贵金属,如金、银、铂、铱等。(4)稀有金属,如锗、铍、镧、铀等。
a、重金属:一般是指密度在4.5克/厘米3以上的金属。例如铜、锌、钴、镍、钨、钼、锑、铋、铅、锡、汞等,过渡元素大都属于重金属。也有把密度在5克/厘米3以上的金属称为重金属的。
b、轻金属:一般是指密度在4.5克/厘米3以下的金属。例如钠、钾、镁、钙、铝等。周期系中第一、二主族均为轻金属。也有把密度在5克/厘米3以下的金属称为轻金属的。
c、贵金属:通常是指金、银和铂族金属(包括钌、铑、钯、锇、铱、铂)。这些金属在地壳中含量较少,不易开采,价格较贵,所以叫贵金属。这些金属对氧和其它试剂较稳定,金和银常用来制造装饰品和硬币。
d、稀有金属:通常是指自然界中含量较少,比较分散的金属。它们难于从原料中提取,在工业上制备及应用较晚。稀有金属和普通金属没有严格界限,某些稀有金属比
铜、汞、镉等金属还多。稀有金属在现代工业中具有重要的意义,往往把黑色金属、有色金属和稀有金属并列为三大类。稀有金属根据其在地壳中的分布状况及冶炼
方法,可分为六类:(1)稀有轻金属,如锂、铷、铯、铍、钛等。(2)稀有难熔金属,如钨、钼、铌、钽、铪、钒等。(3)稀有分散金属(或称稀散金属),
如镓、铟、铊、锗等。(4)稀土金属,包括钪、钇和镧系元素。(5)稀有贵金属,指铂族元素。(6)稀有放射性金属:包括钋、钫、镭、锕、钍、镤、铀以及
从1940年以来陆续发现的十多种人造放射性元素。
【说明】
1.金属具有特殊的金属光泽(对可见光强烈反射)、富有延性和展性,是电和热的良导体等性质。
2.金属的上述特性都跟金属晶体里含有自由电子有关。在金属晶体中有中性原子、金属阳离子和自由电子。自由电子能在整个晶体中自由移动。
①当光线照射到金属表面时,自由电子吸收所有频率的可见光,然后很快发射出大部分所有频率的可见光,这就使绝大多数金属显出银白色或钢灰色的光泽。金属在
粉末状态时,晶体排列不规则,可见光吸收后难以发射出去,所以金属粉末一般呈暗灰色或黑色。少数金属如金、铝等,它们的粉末仍保持原有的颜色和光泽。
②自由电子在金属晶体里作不规则的运动,在外电场的作用下,自由电子会作定向移动,形成电流,这就是金属容易导电的原因。
⑧当金属的一部分受热时,受热部分的自由电子的能量增加,运动加剧,不断跟金属离子碰撞而交换能量,把热量从一部分传向整块金属,因而金属有良好的导热性。
④当金属受到外力作用时,金属晶体内某一层金属原子、离子跟另一层金属原子、离子发生相对滑动,由于自由电子的运动,各层间仍保持着金属键的作用力,所以金属具有良好的延展性。只有少数金属,如锑、铋、锰性质比较脆。
3.金属在通常状况下,除汞是液体外,其余都是固体。导电、导热性最好的是银,延性铂最突出,展性金最优越,密度最大的是锇(在25℃是22. 57 g/cm3),硬度铬最高,熔点最高的是钨(3410℃)。
4.金属元素原子的价电子较少,在化学反应中容易失去电子,所以金属一般表现还原性。
5.工业上常常把金属分为黑色金属和有色金属两大类。有又可分为轻金属、重金属、贵金属、稀有金属和半金属等类别。
6.金属除铜、金、铂和铋等以游离态存在外,极大多数以化合态存在于自然界中。金属的矿物通常以氧化物或硫化物的形式存在,较少的氯化物、硫酸盐、碳酸
盐、硅酸盐等形式存在于自然界。业上常在高温下用碳、一氧化碳或氢气还原、电解水溶液或熔融盐、用活泼金属(如Al、Ca、Mg、Na)热还原等方法提炼金属。
【混和物】由几种不同的单质或化合物通过机械混和而成的物质。混和物没有固定的组成,混和物中各成分仍保持各自原有的性质,可以利用混和物中所含各成分的不同物理性质进行分离,例如空气中所含的氮气、氧气、惰性气体等可利用它们的沸点不同而分离开来。
说明
1.混合物跟化合物不一样,它没有固定的组成。混合物中各组分仍保持各自原有的性质。
2.混合物中各组分之间可以均匀地分散(如溶液)或非均匀地分散(如浊液或固体混合物),但互相不发生化学反应。由于不同组分之间相互吸引或排斥,可能影响混合物的整体特性。例如,由几种液体形成的混合物,总体积一般不等各种液体分体积的和。
3.混合物能根据它所含各组分的物理性质(如溶解度、沸点、密度、磁性等)的不同,用物理方法(如结晶、升华、蒸馏、萃取等操作)加以分离。
4.我国中学化学教材中长期把混合物写成混和物,把混合写成混和,现在已经改正。
【定义】由不同种元素组成的纯净物。化合物具有固定的组成并具有一定的性质。化合物从成分上可分为有机物和无机物两大类,从构成化合物的化学键又可分为离子化合物和共价化合物两大类。
【说明】【定义】由同种元素组成的纯净物。单质不可能再分解成两种或两种以上的不同物质。例如氧气(O2)、磷(P4)、铁(Fe)、银(Ag)等。单质和元素是两个不同的概念,元素是具有相同核电荷数的同一类原子的总称,元素以游离态存在时为单质,有些元素可以形成多种单质,例如碳元素可以形成金刚 石、石墨和无定形碳等多种单质。根据单质的不同性质,一般单质可分为金属和非金属两大类。
【定义】由一种单质或一种化合物组成的物质。
纯净物具有固定的组成、结构和性质,例如纯净的水无色透明、无味。密度是1克/毫升,熔点0℃, 沸点100℃。自然界里纯净物极少,根据生产和科学实验的要求,可按物质不同性质进行提纯。实际上绝对纯的物质是不存在的,凡含杂质的量不至于在生产和科 学实验过程中发生有害影响的物质,就当作纯净物,如作半导体材料的高纯硅,其纯度为99.999999999%,也不是完全纯净的。因此,纯净物一般是指 含杂质很少具有一定纯度的物质。
【说明】
1.纯净物都有固定的组成,可以用一定的化学式表示。纯净物不能用物理方法而只能用化学方法把各组成元素分开。
2.实际上完全纯的物质是没有的。一种物质,它所含杂质的量不至于在生产和科研中发生有害影响,这种物质可以看作纯净物。一般说的纯净物,它们的纯度有差
别。例如,化学试剂按纯度由低到高可分为工业纯、实验纯(L.R)、化学纯(C.P)、分析纯(A.R)、优级纯(G.R)和超纯等多种规格。
3.在实验中选用试剂的纯度等级过高,会因价格过高而造成不必要的浪费;选用试剂纯度等级过低,会因试剂中的杂质干扰而造成实验失败。应该根据用途不同,选用纯度相当的试剂或原料。
许多物质从水溶液中形成晶体析出时,晶体里常结合一定数目的水分子。这样的水分子叫做结晶水。如胆矾(CuSO4·5H2O)中就含有结晶水。
一般指中心原子获得电子显示氧化性的酸。如浓硫酸、硝酸、氯酸、高氯酸、高锰酸、重铬酸等,其中心原子在氧化-还原反应中容易获得电子而显示氧化性,可用作氧化剂。任何酸的水溶液中都不同程度地电离出H+,H+在一定条件下可获得电子而形成H2,这也是酸的氧化性的表现,实质上是H+的一种性质。应该与酸的中心原子获得电子所呈现的氧化性区别开来。通常把盐酸、稀硫酸等称作为非氧化性酸。
【定义】在氧化-还原反应中失去电子(或电子对偏离)的反应物。在反应中还原剂中元素的化合价(或氧化数)升高。还原剂能还原其它物质而自身在反应中被氧化。
【说明】
1、还原剂能还原其他物质而自身被氧化。它失去电子后,自身的化合价(或氧化数)升高。
2、还原剂通常是指容易失去电子的物质,常见的有:
(1)活泼金属,如钠、钾、镁、铝、铁等。
(2)具有低化合价(氧化数)的金属离子,如Fe2+、Sn2+等。
(3)非金属离子,如I-、S2-等。
(4)含有低化合价(氧化数)元素的含氧化合物,如CO、SO2、Na2SO3、Na2S2O3、NaNO2等。
3、根据还原剂失去电子的难易程度,可分为弱还原剂和强还原剂,定量地判断还原剂还原能力的大小,应根据该还原剂及其氧化产物所组成的氧化还原电对的标准电极电位E0值来确定,E0值越负,表明该还原剂的还原能力越强。
【定义】 盐是指一类金属离子或铵根离子与酸根离子或非金属离子结合的化合物。如NaCl、(NH4)2SO4、Cu2(OH)2CO3、KHCO3等。在常温时,盐一般为晶体。它们在水中的溶解性各不相同,钾盐、钠盐、硝酸盐和铵盐很容易溶解;有些盐很难溶解,如AgCl和BaSO4等。铵盐和碳酸盐、硝酸盐、亚硝酸盐、重铬酸盐、高锰酸盐等含氧酸的盐稳定性较差,受热时可以分解。大多数盐是强电解质,其水溶液或熔液能够导电。但有些盐(如HgCl2)的水溶液几乎不导电,它在水溶液中主要以分子状态存在。根据组成的不同,盐可以分为无氧酸盐、含氧酸盐、正盐、酸式盐、碱式盐、复盐、络盐等。
【说明】
1.根据组成不同,盐可以分成正盐、酸式盐、碱式盐、复盐和 络盐等。既不含可以电离的氢原子,又不含氢氧根,这种盐叫正 盐。由金属离子和含有可以电离的氢原子的酸根所组成的盐,叫 做酸式盐,如NaHC03和NaH2P04。它们分别叫碳酸氢钠和磷 酸二氢钠。除金属离子和酸根以外,还含有一个或几个氢氧根, 这种盐叫碱式盐,如:Cu2(OH)2C03、Mg(OH)Cl、(BiO)Cl 和 (BiO)2C03。它们分别叫做碱式碳酸铜、碱式氯化镁、碱式氯化 铋(或氯化氧铋)和碱式碳酸铋(或碳酸氧化铋)。上述后面的f种 物质是碱式盐失水后的产物,如Bi(OH)2Cl失水后成(BiO)Cl。
2.在常温下,盐一般是晶体。大多数盐能溶于水,如钾盐、钠 盐、铵盐、硝酸盐等。
3.有些盐受热时容易分解,如铵盐、碳酸盐、硝酸盐、重铬酸 盐和高锰酸盐。但是盐都比相应的酸稳定,例如,就稳定性说, Na2C03>NaHC03>H2C03
4.大多数盐是电解质,它们的水溶液或在熔融状态下能够导 电。有些盐(如HgCl2)由于发生离子极化作用,键性从离子键转向共价键,它们的水溶液不导电。
【苛性碱】碱金属氢氧化物的总称。一般指的是苛性钠(NaOH)和苛性钾(KOH)。由于它们对皮肤、羊毛、纸张、木材等具有强烈的腐蚀性而得名。
【碱】电解质电离时所生成的阴离子全部是氢氧根离子(OH-)的化合物。例如NaOH、Ca(OH)2、NH3·H2O等。能跟酸性氧化物或酸反应生成盐和水,碱的水溶液有涩味,可使紫色石蕊试液变蓝。根据碱的电离程度,可以分为强碱(如NaOH、Ca(OH)2)和弱碱(如NH3·H2O)。根据碱电离时产生的氢氧根离子的数目可分为一元碱(如NaOH)、二元碱(如Ca(OH)2)、多元碱(如Fe(OH)3)等。此外,根据酸碱的质子理论和电子理论,还有质子碱和路易斯碱,因而使得“碱”这个概念包括的范围极为广泛,而且又赋予它新的含义。
【说明】
1.根据碱在水溶液中的电离程度,碱分成强碱和弱碱。能全 部电离的是强碱,包括碱金属和钙、锶、钡的氢氧化物;只能部分电离的是弱碱,其他的氢氧化物都是弱碱。
【过氧酸】简称过酸。分子中含有过氧基(-O—O-)的酸。例如过硫酸H2SO5和过二硫酸H2S2O8等。过氧酸可以看成是H2O2中的氢原子被酸根取代的产物。
【酸】电解质电离时所生成的阳离子全部是氢离子(H+)的化合物。它能和碱或碱性氧化物反应生成盐和水,能与某些金属反应生成盐和氢气,水溶液有酸味并能使指示剂变色,如紫色石蕊变红。根据酸分子中可被金属原子置换的氢原子数目,可分为一元酸(如HCl)、二元酸(如H2SO4)、多元酸(如H3PO4)等。根据酸在水溶液中产生氢离子程度的大小(即电离度的大小),可分为强酸(如HCl、H2SO4、HNO3、HClO4等)和弱酸(如H2CO3、H2S等)。根据酸根的组成成分又可分为含氧酸(如H2SO4)和无氧酸(如HCl)。此外,根据酸碱的质子理论和电子理论,还有质子酸和路易斯酸等,因而使得“酸”这个概念包括的范围极为广泛,而且又赋予它新的含义。
【说明】
1. H30+(水合氢离子)是H+和H20结合而成的。在书写电离方程式时,为了简便起见,通常仍以H+代替H30+ 。
2. 根据酸在水溶液中电离度的大小,酸分为强酸和弱酸。根据酸分子中可以电离的氢原子个数,酸分为一元酸(如HNO3)、 二元酸(如H2S04)和三元酸(如H3P04)。根据酸中是否含氧,酸分为含氧酸和无氧酸。
3. 无氧酸称氢某酸。如HF叫氢氟酸,H2S叫氢硫酸。在无氧酸中,HC1、HBr和HI是强酸,其余都是弱酸。简单含氧酸 通常叫某酸,如硫酸(H2S04)、碳酸(H2CO3)。某一成酸元素如果能形成多种含氧酸,就按成酸元素的氧化数高低命名,如高氯酸 (HClO4、氯酸(HC103)、亚氯酸(HC102)、次氯酸(HClO)。两个简单含氧酸缩去一分子水而形成的酸,叫做焦酸(或称一缩某酸、重酸),例如,2H2S04 = H2S207(焦硫酸)+H20;2H2Cr04=H2Cr207(重铬酸)+H2O
酸分子中的氢氧塞数等于成酸元素的氧化数,这种酸叫原某酸,如 原磷酸[P(OH)5 即 H5PO5],原硅酸[Si(OH)4,即 H4Si04]。一个正酸分子失去一分子水而形成的酸,叫做偏某酸,如偏磷酸 (HP03)、偏硅酸(H2Si03)。含有过氧键(一0—O—)的酸叫过酸,如过一硫酸(H2SO5),过二硫酸(H2S2O8)。
4. 把含氧酸的化学式写成MOm(OH)n(M是非金属),就 能根据m值判断常见含氧酸的强弱。
m=0,极弱酸,如硼酸(H3B03)。
m=1,弱酸,如亚硫酸(H2S03)。
m=2,强酸,如硫酸(H2S04)、硝酸(HN03)。
m=3,极强酸,如高氯酸(HC104)。
5. 强酸在水溶液中完全电离;弱酸在水溶液中存在电离平衡 HA H+ + A-。
K=[H+][A-]/[HA]
电离平衡常数K随弱酸的浓度和温度不同,变化不大。
6. 定义2是根据酸碱质子理论对酸下的定义。
A H+ +B
HC1= H++Cl-
H2PO4- H+ +HPO42-
NH4+ H+ +NH3
HC1、H2SO4叫分子酸,H2P04-、NH4+叫离子酸,A和B互为共轭酸碱对。
【定义】
氧元素跟其它元素形成的二元化合物。如氧化钙、二氧化硫、一氧化氮等。氧化物可分为不成盐氧化物(如一氧化碳、一氧化氮等)和成盐氧化物 两类,后者又分为碱性氧化物(如氧化钙)、两性氧化物(如氧化铝)和酸性氧化物(如二氧化碳)。此外还有过氧化物、超氧化物、臭氧化物等。同一种元素往往 有几种不同价态的氧化物,如SO2和SO3;FeO、Fe2O3和Fe3O4等。有时氧化物的含义更广泛,不限于含氧元素的二元化合物,如多元氧化物(如NiFe2O4)和有机氧化物(如氧化乙烯C2H4O2,即环氧乙烷)等。
【分类】
1、不成盐氧化物:又称惰性氧化物或中性氧化物。是既不能跟酸起反应,又不能跟碱起反应的氧化物,如CO和NO等。
2、碱性氧化物:能跟酸起反应,生成盐和水的氧化物。金属氧化物大多数是碱性氧化物,如氧化钙、氧化铜等。碱性氧化物对应的水化物是碱,例如CaO对应的水化物是Ca(OH)2,CuO对应的水化物是Cu(OH)2等,多数碱性氧化物不能直接跟水化合,有些碱性氧化物如CaO能跟水化合生成碱。CaO+H2O=Ca(OH)2,碱性氧化物一般由金属直接氧化或难溶性碱、含氧酸盐受热分解制得。
3、两性氧化物:既能跟酸起反应生成盐和水,又能跟碱起反应生成盐和水的氧化物。例如氧化铝、氧化锌等,某些过渡元素的中间价态的氧化物,如Cr2O3和Mn2O3等也是两性氧化物。两性氧化物对应的水化物是两性氢氧化物。
4、酸性氧化物:能跟碱起反应,生成盐和水的氧化物。非金属氧化物多数是酸性氧化物,某些过渡元素的高价氧化物(如CrO3、Mn2O7等)也是酸性氧化物。酸性氧化物也叫酸酐,例如SO3叫硫酐,CO2叫碳酐。酸性氧化物对应的水化物是含氧酸,如SO3对应的水化物是H2SO4,CO2对应的水化物是H2CO3,SiO2对应的水化物是H2SiO3等。酸性氧化物多数能跟水直接化合生成含氧酸,少数酸性氧化物(如SiO2)不能直接跟水反应。酸性氧化物一般由非金属直接氧化或含氧酸、含氧酸盐受热分解制得。
【说明】
1.除了有些稀有气体以外,实际上已制得所有元素的氧化物。根据不同的标准,氧化物有以下几种分类。
(1)按酸碱性分,一般分酸性氧化物(如三氧化硫)、碱性氧化物(如氧化钠)、两性氧化物(如氧化铝)和不成盐氧化物(如一氧化氮)。
(2)按价键特征分,有离子型氧化物(如氧化钠)和共价型氧化物(如二氧化碳)。
(3)按晶体结构分,有无限三维晶格氧化物(如二氧化钛)、层状晶格氧化物(如三氧化钼)、链状晶格氧化物(如三氧化铬)和分子结构氧化物(如二氧化碳)。
2.同种元素往往有几种不同价态的氧化物,如SO2和SO3,As2O3和As2O5,FeO、Fe2O3和Fe3O4等。在Fe3O4中,Fe有两种不同的价态,一般把Fe3O4看作是FeO·Fe2O3,经x射线研究证明,它是一种铁(Ⅲ)酸盐,化学式是FeⅡFeⅢ[Fe3Ⅲ4]。
3.有人认为氧化物是指氧跟电负性比氧小的元素所形成的二元化合物。从这个观点看,OF2不属于氧化物,而属于氟化物。
4.氧化物中还有过氧化物(如过氧化钠、过氧化氢)和超氧化物(如超氧化钾KO2)。过氧化物和超氧化物都具有强氧化性。
5.有时氧化物的含义比较广泛,如NiFe2O4、YVO4、 Y3Al5O12等叫混合氧化物或多元氧化物。还有一类叫有机氧化物,如C2H4O2叫环氧乙烷或氧化乙烯、C3H6O叫环氧丙烷或氧化丙烯。
6.同周期元素的氧化物,随着原子序数的递增,碱性减弱而酸性增强。同族元素的氧化物,随着原子序数的递增,碱性增强而酸性减弱。同种元素形成不同价态的氧化物时,随着价态的递增,氧化物的酸性增强。
【定义】简称酐。含氧酸脱水后生成的氧化物或羧酸的分子间和分子内脱水缩合而产生的有机物,都叫做酸酐。例如三氧化硫SO3为硫酐,可看作H2SO4分子缩去一个分子水而成;五氧化二磷(P2O5)为磷酐,可看作两个H3PO4分子缩去三个水分子而成;醋(酸)酐(CH3CO)2O,可以看作由两个醋酸CH3COOH分子缩去一个分子水而成。酸性氧化物也叫酸酐,但酸酐不一定是氧化物,例如醋酐。
【说明】
1.SO3、N2O5、P2O5分别是 H2SO4、HNO3、H3PO4的酸酐,叫做硫酸酐(简称硫酐)、硝酸酐、磷酸酐。酸酐中的成酸元素跟对应水化物(即含氧酸)中的成酸元素,如SO3和H2SO4,N2O5和HNO3,它们的化合价相同。
2.通常酸酐跟水化合而生成对应的酸。
SO3+H2O =H2SO4 N2O5+H2O=2HNO3
个别酸酐不能跟水反应,如SiO2不溶于水,但H2SiO3的酸酐仍是SiO2
3.有时候酸酐跟水结合能生成几种酸,则该酸酐同时成为几种酸的酸酐。例如,P2O5跟不同数目的水分子结合,能生成偏磷酸(HPO3)、磷酸(H3PO4)和焦磷酸(H4P2O7)等。
4.大多数含氧酸的酸酐是非金属氧化物,但也有一些是金属氧化物。例如高锰酸(HMnO4)的酸酐是Mn2O7,重铬酸(H2Cr2O7)的酸酐是CrO3。
5.有机酸酐不是氧化物,例如,乙酸酐是由乙酸分子间脱水而得到的。有的有机酸酐是由分子内缩水而得到的。通常用脱水剂(如P2O5、乙酸酐)跟羧酸共热而脱水来制有机酸酐。
【无机物】是无机化合物的简称,通常指不含碳元素的化合物。但少数含碳的化合物,如一氧化碳、二氧化碳、碳酸盐、氰化物等也属无机物。无机物大致可以分为氧化物、碱、酸和盐四大类。
【定义】碱中的氢氧根离子部分被中和的产物,它是由金属阳离子、氢氧根离子和酸根阴离子组成的。例如碱式氯化镁[mg(OH)Cl]、碱式碳酸铜[Cu2(OH)2CO3]。
【说明】
1、Na2CO3溶液加入铜盐溶液得到绿色Cu2(OH)2CO3沉淀。自然界存在的Cu2(OH)2CO3俗称孔雀绿。
2、碱式盐的溶解度一般不大,但溶于强酸,受热的分解,例如:
Cu2(OH)2CO3==2CuO+CO2↑+H2O
【定义】酸中的氢离子部分被碱中和的产物,它是由金属阳离子(或铵根离子)和酸式酸根离子组成,例如KHSO4、NaHCO3、NH4HCO3等。
【说明】
1、大多数酸式盐的溶解度大于正盐,例如Ba(HCO3)2、Ca(H2PO4)2在水中易溶而BaCO3、Ca3(PO4)2难溶。NaHCO3在水中 的溶解度小于CO2,往饱和的Na2CO3溶液中通入足量CO2,便可析出NaHCO3晶体。
2、酸式盐的水溶液不一定显酸性。KHSO4在水中完全电离出 H+、K+、SO42-;NaHCO3溶液中,HCO3-离子既能电离产生H+,又能水解产生OH-,由于水解趋势大于电离趋势,溶液呈弱碱性;NaH2PO4溶液,水解趋势小于电离趋势,溶液呈弱酸性;
3、弱酸酸式盐有两性,既能跟酸反应,又能跟碱反应。例如:
Ca(H2PO4)2+2Ca(OH)2==Ca3(PO4)2↓+4H2O
NaHCO3+HCl==NaCl+H2O+CO2↑
4、含氧酸的酸式盐,其热稳定性一般小于正盐,大于相应的酸,例如:CaCO3> Ca(HCO3)2> H2CO3
5、常温酸式盐可由多元酸与适量的碱式盐反应生成,例如:
NaOH+CO2==NaHCO3
NaCl固+H2SO4浓==NaHSO4+HCl↑
Ca3(PO4)2+4H3PO4==3Ca(H2PO4)2
【正盐】金属阳离子(或铵离子)和酸根阴离子组成的化合物。正盐是酸跟碱完全反应(中和完全)的产物。例如,磷酸与氢氧化钠完全反应:
H3PO4+3NaOHNa3PO4+3H2O
若多元酸未被碱完全中和,则生成酸式盐:
H3PO4+NaOHNaH2PO4+H2O
H3PO4+2NaOHNa2HPO4+2H2O
多元碱未被酸完全中和,则生成碱式盐:
Mg(OH)2+HClMg(OH)Cl+H2O
由此可见,多元酸(或碱)与碱(或酸)反应生成的盐,究竟是正盐、酸式盐,还是碱式盐,取决于反应物的物质的量之间的比值。参看酸式盐、碱式盐。
【两性氢氧化物】既能跟酸反应,又能跟碱反应,分别生成盐和水的氢氧化物,例如Al(OH)3和Zn(OH)2。两性金属氢氧化物都难溶于水。Al(OH)3 溶于盐酸生成铝盐,溶于NaOH溶液生成偏铝酸盐。
Al(OH)3+3HCl=AlCl3+3H2O
Al(OH)3+NaOH=NaAlO2+2H2O
氢氧化物的两性是由它既能进行酸式电离,又能进行碱式电离决定的,例如Al(OH)3在水中:
AlO2- +H+ +H2OAl(OH)3
Al3+ +3OH-
未溶的Al(OH)3与两种电离产生的离子建立动态平衡。当加入盐酸时,平衡向右移动,Al(OH)3继续溶解,发生碱式电离产生OHˉ,与盐酸中和生成AlCl3和H2O;当加入NaOH溶液时,平衡向左移动,Al(OH)3也继续溶解,发生酸式电离产生H+ 与NaOH中和生成NaAlO2和H2O。Al(OH)3是典型的两性氢氧化物,它的酸性和碱性都很弱。
两性氢氧化物表现酸性时,可写成酸的形式,例如H3AlO3、H2ZnO2。一些非金属氢氧化物以酸性为主,一般写酸的形式,例如亚砷酸(H3AsO3)。
【络合物】含有络离子的一类复杂化合物,例如冰晶石Na3[AlF6]、硫酸四氨合铜(II)[Cu(NH3)4]SO4、氢氧化二氨合银[Ag(NH3)2]OH等。上述络合物的化学式中,用方括号括起的部分叫络离子,是络合物的内界,方括号以外的部分是络合物的外界。络离子是由中心离子(或原子)和配位体以配位键结合而成。常见的中心离子是过渡元素离子如Fe2+、Fe3+、Cu2+、Ag+、Hg2+等;常见的配位体有F-、Cl-、Cn-、SCN-离子和NH3·H2O等分子。它们之间容易形成络离子如[Fe(SCN)]2+、[Ag(NH3)2]+、[Cu(H2O)4]2+等。络合物的内界与外界以离子键结合,络合物溶于水时,完全电离产生络离子:[Ag(NH3)2]OH[Ag(NH3)2]++2OH-
络离子比较稳定,在水溶液中部分电离。
[Ag(NH3)2]+Ag++2NH3
络合物普遍存在。例如人体中的血红素是Fe3+的络合物,植物体内的叶绿素是Mg2+的络合物。络合物广泛应用于工农业生产和科学技术,例如金的提取、电镀、照相技术,离子的鉴定和测定等。络合物,现称为配位化合物,简称配合物。
【同素异形体】(亦称同素异性体)同种元素组成的不同单质,例如石墨和金刚石、氧气和臭氧、白磷和红磷等。同素异形体的分子组成或晶体结构不同,它们的物理性质和化学性质有明显的区别,
例如金刚石是由碳原子以共价键连接形成的正四面体空间网状结构的原子晶体;石墨是一种层状结构的过渡型晶体,层内碳 原子以共价键结合形成正六边形网状结构,层与层之间距离较大,相当于分子间力的作用。金刚石是硬度最大的物质,不能导电;而石墨的硬度较小,层之间可以相 对滑动,导电性好,化学性质较金刚石活泼。
又如白磷和红磷,白磷是由正四面体结构的分子(P4)组成,为白色腊状固体,有剧毒,易溶于CS2,着火点低(40℃),在空气中可自燃;红磷是较复杂的层状晶体,红色粉末,无毒,不溶于CS2,着火点240℃。隔绝空气加热温度升至260℃时,白磷转变成红磷,红磷受热在416℃时先升华,蒸气冷却又变为白磷。
O2和O3的分子组成不同,O3是较O2更活泼的氧化剂。
【水的软化】用人工的方法降低硬水的硬度的过程。
软化硬水的主要方法有:
(1)加热法,以除去暂时硬度。
(2)石灰纯碱法,用石灰降低碳酸盐的硬度,用纯碱降低非碳酸盐的硬度。
(3)离子交换法,用离子交换剂除去钙、镁离子。
在日本九州熊本县海边,有一个小镇,叫水俣镇。1953年,一位7岁的小女孩患了一种怪病,起初是口齿不清,步态不稳,后来麻痹抽筋,完全不能行动。医生们怎么也治不好这种怪病。连生病的原因也弄不清。惟一的线索是,3年前这个镇上曾出现过不少狂猫,症状也是行走不稳,老兜圈,有时麻痹抽筋,就像在跳独脚舞,它们痛苦万状,有的竞跳海自杀,由于这些原因.医生们就把这种病叫作“狂猫病”。
随着狂猫病患者的增多和死亡人数的增加,熊本大学凶科研人员加紧了对狂猫病病因的调查。他们注意到,人同病,是不是与吃色有关。经过分析.证实狂猫病果然是吃鱼引起的。进一步的调查、化验发现,水俣湾里的鱼身体里含有大量的能使动物和人中毒的甲基汞。
这么大量的甲基汞是怎么进入猫和人体的呢?调查发现,在水俣湾附近有一家生产氮肥的工厂,从它那里排出大量的含甲基汞的废水,污染了水俣湾;使生活在这一带海水中的鱼中毒。而人和猫吃了这种沉积了大量甲基汞有毒物质的鱼。就得了那种狂躁不安的怪病。到1974年,患者已达780多人,死亡200多人。从1997年开始,我国社会生活中又多了一件新鲜事,许多城市就像发布天气预报那样,在当地电视台、电台、报纸上公布一周来本城市的空气质量情况。从此,城市空气质量的好坏对于许多老百姓来说,不再是一个未知数了。
通过新闻媒介向全社会发布空气质量周报是国务院环境保护委员会1997年1月做出的决定,当时要求在全国46个环境保护重点城市发布空气质量周报。当年5月23日,南京市率先在当地新闻媒介上发布空气质量周报,紧接着,上海、武汉、沈阳……到1998年6月,46个城市全部推出了空气质量周报。这46个城市包括所有的直辖市、省会城市、经济特区城市以及一部分重点旅游城市。在物理学中我们学过,所有的带热物体都能以不同的波长放出不同能量的辐射。炽热的太阳发出波长较短的高能辐射,凉爽的地球表面发出波长较长的低能辐射。地球的大气层起着温室玻璃的作用,允许波长较短的太阳辐射穿过,抵达地球表面,但是却能够捕获波长较长的地球的红外辐射热,使地球保持着一种温暖的状态,这种现象被形象地称为“温室效应”。大气之所以起到温室效应的作用,是因为大气本身合有大量的温室气体,比如水蒸气、二氧化碳、甲烷等温室气体。是不是温室气体越多越好呢?当然不是。当温室气体过多时,会使地球的平均温度升高,全球气候会因此变暖。
【光化学烟雾】汽车、工厂等污染源排入大气的碳氢化合物和氮氧化物等一次污染物在阳光(紫外光)作用下会发生光化学反应生成二次污染物。参与光化学反应过程的一次污染物和二次污染物的混和物(其中有气体污染物,
也有气溶胶)所形成的烟雾污染现象,
称为光化学烟雾。光化学烟雾成分复杂, 对动物、植物和材料有害的主要是O3、PAN(过氧乙酰硝酸酯),
丙烯醛和甲醛等二次污染物。控制光化学烟雾首先要控制污染源,
主要有减少汽车排放的碳氢化合物、氮氧化物及一氧化碳等;此外,
炼油工业、加油站、焚烧炉等也是重要的排放源,
应该加以控制。 如果污染严重,空气中就会产生一种可怕的烟雾——光化学烟雾。
20世纪40年代,美国加利福尼亚州洛杉矶发生过一次严重的光化学烟雾。50年代以后,光化学烟雾事件在美国其他城市和世界各地相继出现,如日本、加拿大、前联邦德国、溴大利亚、荷兰等国的一些大城市都发生过。1974年,中国兰州的西固石油化工区也发生过光化学烟雾。近年来,一些乡村地区也出现光化学烟雾污染的迹象。日益严重的光化学烟雾问题,逐渐引起人们的重视。世界卫生组织和美国、日本等许多国家已经把臭氧和光化学氧化剂(臭氧、二氧化氮、过氧乙酰硝酸酯及其他能使碘化钾氧化成碘的氧化剂的总称)的水平作为判断大气环境质量的标准之一,并据以发布光化学烟雾的预警。
光化学烟雾是怎样产生的呢?
以城市为例,城市是一个人口、工业和交通聚集的地方。汽车尾气、工厂向大气中排放大量的碳氢化合物和氮氧化合物等一次污染物,并在紫外线的作用下发生光化学反应生成二次污染物。参与光化学反应过程的一次污染物和二次污染物混合起来形成一种烟雾,称为光化学烟雾。
光化学烟雾一般发生在大气湿度相对较低、气温为24—32度的夏季晴天,高峰出现在中午或稍后。城市和城郊的光化学烟雾通常要比乡村严重一些,但近几年来发现许多乡村地区光化学烟雾也非常严重,有的甚至超过城市。因此,光化学氧化剂的污染不只是城市问题,而且是区域性的污染问题。
光化学烟雾成分十分复杂,但是对动、植物和材料有害的是臭氧、过氧乙酰硝酸酯和丙醛、甲醛等二次污染物,这些物质都具有非常强烈的氧化性。
人和动物受到了光化学烟雾的伤害以后,眼睛和呼吸道粘膜就会受到强烈的刺激,引起眼睛红肿和喉炎,感觉头痛,呼吸困难。植物受臭氧的损害以后,开始表皮褪色,呈蜡质状,经过一段时间后,色素发生变化,叶片上出现红褐色斑点。PAN使叶子背面呈银友色或古铜色,影响植物的生长,降低植物对病虫害的抵抗力。
光化学烟雾是名副其实的“健康杀手”。
在高层大气中(高度范围约离地面15~24KM),由氧吸收太阳紫外线辐射而生成可观量的臭氧(O3)。光子首先将氧分子分解成氧原子,氧原子与氧分子反应生成臭氧:
O2→2O
O+O2→O3
O3和O2属于同素异形体,在通常的温度和压力条件下,两者都是气体。
当O3的浓度在大气中达到最大值时,就形成厚度约20KM的臭氧层。臭氧能吸收波长在220~330nm范围内的紫外光,从而防止这种高能紫外线对地球上生物的伤害。
过去人类的活动尚未达到平流层(海拔约30KM)的高度,而臭氧层主要分布在距地面20~25KM的大气层中,所以未受到重视。近年来不断测量的结果已证实臭氧层已经开始变薄,乃至出现空洞。1985年,发现南极上方出现了面积与美国大陆相近的臭氧层空洞,1989年又发现北极上空正在形成的另一个臭氧层空洞。此后发现空洞并非固定在一个区域内,而是每年在移动,且面积不断扩大。臭氧层变薄和出现空洞,就意味着有更多的紫外辐射线到达地面。紫外线对生物具有破坏性,对人的皮肤、眼睛,甚至免疫系统都会造成伤害,强烈的紫外线还会影响鱼虾类和其他水生生物的正常生存,乃至造成某些生物灭绝,会严重阻碍各种农作物和树木的正常生长,又会使由CO2量增加而导致的温室效应加剧。
人类活动产生的微量气体,如氮氧化物和氟氯烷等,对大气中臭氧的含量有很大的影响。引起臭氧层被破坏的原因有多种解释,其中公认的原因之一是氟里昂(氟氯甲烷类化合物)的大量使用。氟里昂被广泛应用于制冷系统、发泡剂、洗净剂、杀虫剂、除臭剂、头发喷雾剂等。氟里昂化学性质稳定,易挥发,不溶于水。但进入大气平流层后,受紫外线辐射而分解产生Cl原子,Cl原子则可引发破坏O3循环的反应:
Cl+O3→ClO+O2
ClO+O→ClO2
由第一个反应消耗掉的CI原子,在第二个反应中又重新产生,又可以和另外一个O3起反应,因此每一个CI原子能参与大量的破坏O3的反应,这两个反应加起来的总反应是:
O3+O→2O2
反应的最后结果是将O3转变为O2,而CI原子本身只作为催化剂,反复起分解O3的作用。O3就被来自氟里昂分子释放出的CI原子引发的反应而破坏。
另外,大型喷气机的尾气和核爆炸烟尘的释放高度均能达到平流层,其中含有各种可与O3作用的污染物,如NO和某些自由基等。人口的增长和氮肥的大量生产等也可以危害到臭氧层。在氮肥的生产中去向大气释放出各种氮的化合物,其中一部分可能是有害的氧化亚氮(N2O),它会引发下列反应:
N2O+O→N2+O2
N2+O2→2NO
NO+O3→NO2+O2
NO2+O→NO+O2
O3+O→2O2
NO按后两个反应式循环反应,使O3分解。
为了保护臭氧层免遭破坏,于1987年签定了蒙特利尔条约,即禁止使用氟氯烷和其他的卤代烃的国际公约。然而,臭氧层变薄的速度仍在加快。不论是南极地区上空,还是北半球的中纬度地区上空,O3含量都呈下降趋势。与此同时,关于臭氧层破坏机制的争论也很激烈。例如大气的连续运动性质使人们难以确定臭氧含量的变化究竟是由动态涨落引起的,还是由化学物质破坏引起的,这是争论的焦点之一。由于提出不同观点的科学家在各自所在的地区对大气臭氧进行的观测是局部和有限的,因此建立一个全球范围的臭氧浓度和紫外线强度的监测网络,可能是十分必要的。
联合国环境计划署对臭氧消耗所引起的环境效应进行了估计,认为臭氧每减少1%,具有生理破坏力的紫外线将增加13%,因此,臭氧的减少对动植物尤其是人类生存的危害是公认的事实。保护臭氧层须依靠国际大合作,并采取各种积极、有效的对策。
1968年3月,在日本的九州、四国等地,几十万只鸡在短时间内突然死亡。经化验.死因是饲料中有一种污染物——多氯联苯。当人们还没有搞清楚是怎么回事的时候,在北九州、爱知县等地有许多人同时患上了一种怪病。患病者起初是眼皮发肿,手心出汗,全身起皮疹疙瘩,以后又感觉全身倦怠,皮肤变黑,严重的患病者肝脏萎缩、四肢麻木、胃肠道功能紊乱等。过了几个月,患者越来越多,超过了5000人,其中16人死亡。轻度患者达13000人。
人们随意抛弃在自然界中的白色废旧塑料包装制品(袋、薄膜、农膜、餐盒、饮料瓶、包装填充物等),飘挂在树上、散落在路边、草坪、街头、水面、农田及住地周围等处的这种随处可见的污染环境现象,称为“白色污染”。
重金属及其化合物的数目很多,有一些微量元素为各种生物所必需,其中锰、铁、钴、铜、锌、铂等六种是一切生命所必需的。但如果环境受到污染,使它们缺乏或过多,就会引起人体发生疾患。一般来讲,原子量在50以上的金属或两性元素,即在周期表中钒后的这类元素均被视为重金属,总数约有六十个。重金属广泛分布于大气圈、岩石圈、生物圈和水圈中。在正常情况下,其自然本底浓度难以达到有害的程度。但大规模的工业生产和排污以及大范围地施用农药,把金属翻弄出来,污染了环境几十年来造成了不少悲剧。危害最大的重金属要属汞、镉、铅、砷4种.
1955年,在日本富山县医院里。一位病人入院已经有几个月了,初期腰、背、膝关节疼痛,随后全身骨骼没有一个地方不痛的,医生们一次又一次会诊,没有—个人能说出这是什么病,因为他们谁也没见过这种病.查遍世界各国的医书,也找不到关于这种病的记载,因为病人老喊“痛”,就叫做“痛痛病”。医生们试着用了一些止痛药,可那只是隔靴搔痒,无济于事。病人痛得无法行动,甚至连呼吸都困难,只得乱喊乱叫。医生们束手无策。
我们有时候从海面或者湖面上看到红、白、黄、褐色的各种各样的如彩带一般的水草样的东西在飘荡,其实这些所谓的“水草”不是水草,而是一种名字叫做“赤潮”的自然现象,这种东西有时候也91做“红潮”、“红祸”。之所以把它P1做赤潮是由于在这些颜色当中,远远望去红色是最显眼的。
多诺拉镇位于美国宾夕法尼亚州;它地处孟农加希拉河一个马蹄形河谷中,两岸百米以上的高山耸立,盆地中央大型炼铁厂、炼锌厂和硫酸厂鳞次栉比,14000多人居住在这里,平常虽不免受到烟熏雾罩,但还未发现受到明显的损害。
大气中的化学物质随降雨到达地面后会对地表的物质平衡产生各种影响。降雨的酸化程度通常用pH值表示,pH值就是氢离子浓度的负对数,即pH=-lg[H+]。
正常雨水偏酸性,pH值约为6~7,这是由于大气中的CO2溶于雨水中,形成部分电离的碳酸:
CO2(g)+H2OH2CO3
H++HCO3-
而水的微弱酸性可使土壤的养分溶解,供生物吸收,这是有利于人类环境的。酸雨通常是指pH小于5.6的降水,是大气污染现象之一。首先用酸雨这个名词的人是英国化学家史密斯。1852年,他发现在工业化城市曼彻斯特上空的烟尘污染与雨水的酸性有一定关系,报导过该地区的雨水呈酸性,并于1872年编著的科学著作中首先采用了“酸雨”这一术语。
酸雨的形成是一个复杂的大气化学和大气物理过程,主要是由废气中的SOx和NOx造成的。汽油和柴油都有含硫化合物,燃烧时排放出SO2,金属硫化物矿在冶炼过程也要释放出大量SO2。这些SO2通过气相或液相的氧化反应产生硫酸,其化学反应过程可表示为:
气相反应:2SO2+O22SO3
SO3+H2O→H2SO4
液相反应:SO2+H2O→H2SO3
2H2SO3+O22H2SO4
大气中的烟尘、O3等都是反应的催化剂,O3还是氧化剂。
燃烧过程产生的NO和空气中的O2化合为NO2,NO2遇水则生成硝酸和亚硝酸,其反应过程可表示为:
2NO+O2→2NO2
2NO2+H2O→HNO3+HNO2
酸雨对环境有多方面的危害:使水域和土壤酸化,损害农作物和林木生长,危害渔业生产(pH值小于48时,鱼类就会消失);腐蚀建筑物、工厂设备和文化古迹也危害人类健康。因此酸雨会破坏生态平衡,造成很大经济损失。此外,酸雨可随风飘移而降落到几千里外,导致大范围的公害。因此,酸雨已被公认为全球性的重大环境问题之一。
公害事件(publienuisanceevents):因环境污染造成的在短期内人群大量发病和死亡事件。
污水处理方法分类
基本方法 |
基本原理 |
单元技术 |
物理法 |
物理或机械的分离过程 |
过滤,沉淀,离心分离,上浮等 |
化学法 |
加入化学物质与污水中有害物质发生化学反应的转化过程 |
中和,氧化,还原,分解,混凝,化学沉淀等 |
物理化学法 |
物理化学的分离过程 |
气提,吹脱,吸附,萃取,离子交换,电解电渗析,反渗透等 |
生物法 |
微生物在污水中对有机物进行氧化,分解的新陈代谢过程 |
活性污泥,生物滤池,生物转盘,氧化塘,厌气消化等 |
常用处理废水的化学方法
方法 |
原理 |
设备及材料 |
处理对象 |
混凝 |
向胶状浑浊液中投加电解质,凝聚水中胶状物质,使之和水分开 |
混凝剂有硫酸铝,明矾,聚合氯化铝,硫酸亚铁,三氯化铁等 |
含油废水,染色废水,煤气站废水,洗毛废水等 |
中和 |
酸碱中和,pH达中性 |
石灰,石灰石,白云石等中和酸性废水,CO2中和碱性废水 |
硫酸厂废水用石灰中和,印染废水等 |
氧化还原 |
投加氧化(或还原)剂,将废水中物质氧化(或还原)为无害物质 |
氧化剂有空气(O2),漂白粉,氯气,臭氧等 |
含酚,氰化物,硫铬,汞废水,印染,医院废水等 |
电解 |
在废水中插入电极板,通电后,废水中带电离子变为中性原子 |
电源,电极板等 |
含铬含氰(电镀)废水,毛纺废水 |
萃取 |
将不溶于水的溶剂投入废水中,使废水中的溶质溶于此溶剂中,然后利用溶剂与水的相对密度差,将溶剂分离出来 |
萃取剂:醋酸丁酯,苯,N—503等设备有脉冲筛板塔,离心萃取机等 |
含酚废水等 |
吸附(包含离子交换) |
将废水通过固体吸附剂,使废水中溶解的有机或无机物吸附在吸附剂上,通过的废水得到处理 |
吸附剂有活性炭,煤渣,土壤等 吸附塔,再生装置 |
染色、颜料废水,还可吸附酚,汞,铬,氰以及除色,臭,味等用于深度处理 |
【定义】由两种或几种不同的单质或化合物机械混合而成的物质,叫做混合物。
【说明】【定义】冶金工业上习惯把铁、铬、锰以及它们的合金(主要指合金钢 及钢铁)叫做黑色金属。实际上纯净的铁与铬都是银白色的,而锰是银灰色的。之所以把它们叫做黑色金属,是因为钢铁表面常覆 盖一层黑色的四氧化三铁,而锰和铬又主要应用于冶炼合金钢,所 以人们把铁、铬、锰以及它们的合金叫做黑色金属。另外,人们专门把这三种金属及其合金归成一类,而把其余所 有的金属及合金归成有色金属,这是因为钢铁在国民经济中占有极其重要的地位,是衡量一个国家国力的重要标志之一;它的产量 约占世界上金属总产量的95%。铬是所有金属中最硬的,又是难腐蚀的金属。人们常把铬接 进钢里,制成又硬又耐腐蚀的铬钢。铬钢是建造机械、枪炮筒、坦克和装甲、车等的好材料。在炼钢时掺人12%以上的铬,再掺进一定量的镍,可以炼成不锈钢。铬还是电镀时(俗称克罗米)的必用金属。在炼钢时掺人约13%的锰,可炼出坚硬、强軔的锰钢。人们用锰钢制造钢磨、滚珠轴承、推土机与掘土机的铲斗等易磨损部件。高锰钢还用来制造钢盔、坦克钢甲和穿甲弹的弹头等。近年来,大洋底下的锰结核引起人们的广泛兴趣。锰结核中 含锰高达50%,铁为27%。据估计,太平洋底约有1000亿吨猛结 核。我国是世界上取得锰结核开采资格的国家之一。新中国成立以后,我国的钢铁工业得到了飞速的发展,到 1993年为止我国的钢产量已超过8868万吨,是新中国成立以前 最高年产量(1943年90万吨)的近89倍,年产量已跃居为世界第二位。
【有色金属】除黑色金属以外的所有金属叫做有色金属。有色金属及其合金是现代材料的重要组成部分,它跟能源、信息技术关系密切,是发展国民经济,实现四个现代化必不可少的基础材料。据估计, 铜、铝、铅、锌、镍、锡、金和银8种有色金属的世界年产量仅为钢产量的5%,而其产值达到钢昀50%。
在冶金工业中,通常按密度的大小、矿物原料的富集程度以及 用途和价格,把有色金属分成轻金属、重金属、贵金属、半金属和稀有金属5大类。【重金属】它一般指密度大于4.5 g/cm3的金属,包括铜、铅、锌、镍、钴、 锡、锑、汞、镉、铋。如果把金属分成铁和非铁金属两大类,锰、铬也可归人重金属。
按冶金工业的有色金属分类法,密度大于4.5g/cm3的金属并不都归入重金属,如金、银、铂等归人贵金属,钨、钼、铌等归人稀有金属。【轻金属】它一般指密度小于4.5 g/cm3的金属,包括铝、镁、钠、钾、钙、 锶、钡。按冶金工业中有色金属的分类法,密度小于4.5 g/cm3的金属并不都归入轻金属,如锂、铷、铯、铍归入稀有金属(分属稀有轻金属),钛归入稀有金属中的难熔金属。
【贵金属】贵金属是有色金属中的一类,包括金、银和铂族金属(钼、钌、 铑、钯、锇、铱)共8种。这些金属在地壳里的丰度低,分布稀散,彼此互溶共生,富集、分离和提纯都较困难,价格较贵,所以得名为贵金属。
大量的银从冶炼铜、铅、锌的阳极泥中回收,金和铂族金属主 要从处理砂矿和矿脉中获得。我国的铂族金属主要从铜、镍、硫化共生矿中回收获得。
金、银常用来制造装饰品和钱币。从19世纪末开始,贵金属和贵金属合金应用于工业和科学研究,现广泛用于航空、航天、原子能、化工、电子工业、冶金工业等部门。【稀有金属】稀有金属通常指在地壳中含量较少或分布稀散的金属。它们 难以从原料中经济地提取,制取和使用得很少,因此得名为稀有金 属。近半个世纪以来,稀有金属的研究、生产和应用迅速发展,有 些稀有金属已经不“稀”,如钛在现代技术中的应用日益广泛、产量增多,所以有人也把它列人轻金属。
我国稀有金属资源丰富,例如,钨、钛、稀土、钒、锆、钽、铌、锂、 铍等已探明的储量都居于世界前列。我国内蒙的包头市境内稀土 储量占全国的97%,占世界储量的77%,是闻名世界的“稀土之 都”。包头稀土高新技术产业是国家级的,预计到本世纪末将成为全球最大的稀土工业之城。【不成盐氧化物】不能跟酸起反应,又不能跟碱起反应而生成盐和水,这类氧化 物叫做不成盐氧化物。例如,NO、CO属于不成盐氧化物。一氧化碳能跟氢氧化钠起反应,生成甲酸的钠盐。
CO+NaOH→HCOONa,但是在生成盐时没有生成水,所以一氧化碳仍属于不成盐氧化物。【定义】能跟碱起反应而生成盐和水,这种氧化物叫做酸性氧化物。
【说明】【定义】能跟酸起反应,生成盐和水,这种氧化物叫碱性氧化物。
【说明】【定义】能跟酸反应生成盐和水,又能跟碱反应生成盐和水,这种氧化物叫做两性氧化物。
【说明】【定义】由一定数量的配体(阴离子或分子)通过配位键结合于中心离子(或中性原子)周围而形成的跟原来组分性质不同的分子 或离子,叫做配合物。
【说明】【定义】
1. 它是带电的原子或原子团。
2. 它是由原子(包括原子团)或分子失去或得到电子后形成 的带电粒子。
【说明】
1. 原子失去电子后带正电荷,变成阳离子(或正离子);得到电子后带负电荷,变成阴离子(或负离子)。带电的原子团如高锰 酸根离子(Mn04-)、铜氨络离子{[Cu(NH3)2+}等,后者用定义2就难以说明。
2. 简单离子有三个重要特征,它们对离子的性质有决定性的影响。
(1) 离子电荷 简单离子所带的电荷数,就是该元素的化合价。例如,Fe-2e-→Fe2+ , Fe2+带2个单位正电荷,铁的化合价是+ 2。Fe2+有还原性,而Fe3+有氧化性。
(2) 离子半径 测定离子化合物的核间距,可以算出离子的半径,如rI-=216pm, rBr-=195pm。I-和Br-有相同的最外电子层结构,但因rI->rBr- ,I—容易失去电子,表现较强的还原性。
(3) 离子的电子层结构 离子的电子层结构有惰性气体构型 [如Na+ (2s22p6), F-(2s22p6) ]、18电子构型[如Zn2+ (3s23p6Sd10)、 Ag+ (4s24p64d10)]和不饱和构型[如 Pb2+ (6s2)、Fe2+ (3s23p63d6)] 三类
3. 离子一般存在于电解质溶液和离子化合物的熔融状态中。 在电弧、火焰或气体放电管中也能发现有简单离子或简单分子的离子。例如,在放电管或阴极射线中可以证明有H2+
【定义】含有结晶水的固体物质,叫做水合物(曾用名:结晶水合物)。
【说明】
1. 结晶水合物中的水分子是以确定量存在的,如FeCl3•6H20、FeS04•7H20、Ba(OH)2•8H20 和 ZnS04•7 H20等。 因此,结晶水合物是纯净物。
2. 水合物中的水分子有各种结合方式。一种是作为配位体, 配位在金属离子上,叫配位结晶水。另一种结合在阴离子上,叫阴离子结晶水。例如,CuSO4•5H20加热到113°C,只失去4分子水,加热到258°C才能脱去最后1分子水。由此推断,它的结构是 [Cu(H2O)4]2+ [SO4(H2O)]2- 。
【高分子溶液】高分子化合物溶于适当的溶剂中可形成高分子溶液。高分子溶液具有双重性质, 一方面由于这种分散相微粒大小与溶胶粒子相近, 表现出溶胶的某些特性;另一方面高分子溶液是分子分散体系, 又有某些真溶液的特点。
高分子溶液和胶体溶液有许多不同之处:
(1)高分子溶液是单相体系, 胶体是多相体系。
(2)高分子溶液分散相极易溶剂化, 这是因为高分子化合物组成中, 常含有大量亲水基团, 如—OH、-COOH、-NH2等, 而胶体微粒的溶剂化能力比高分子化合物弱得多。
(3)高分子溶液中分散相微粒一般不带电荷, 胶体微粒则是带电的, 高分子溶液的稳定性是它的高度溶剂化起了决定性作用。
(4)高分子化合物溶解的过程就是溶剂化过程, 当用蒸发的方法除去溶剂后再加入溶剂仍能自动溶解, 它的溶解过程是可逆的, 而胶体中的胶粒一旦凝聚, 一般很难或者不能用简单加入溶剂的方法使之复原。高分子溶液还有一项与真溶液和溶胶都不同的特性, 就是有较大的粘度。