【元素符号】国际上统一采用的表示元素的化学符号,一般用元素拉丁文名称的第一个字母(大写)来表示,如:氢H、氧O。有些元素的拉丁文名称第一个字母相同,则在第一个字母后加上另一个字母(小写字)以示区别,例如:钙Ca、铜Cu、氯Cl。自人工合成104、105号元素后,由于元素的命名未取得国际上的公认,为统一起见,有关国际会议建议104号以后的新元素按原子序数的拉丁文数字命名,104、105、106、107号元素分别以Unq、Unp、Unh、Uns表示。元素符号除表示元素外,还有量的含义,即表示该元素的一个原子、表示该元素的原子量,例如O,表示氧元素,也表示氧元素的一个原子,又表示它的原子量为15.9994。
【说明】
1. 通常用元素的拉丁文名称的第一个字母(大写)来表示。 例如,碳(Carbonium)元素用C表示。如果几种元素名称的第一个字母相同,就在第一个字母(必须大写)后面加上元素名称中另 一个字母(必须小写)以示区别。例如,钙(Calcium)元素用Ca表示,铜(Cuprum)元素用Cu表示。
2. 1978年届际纯粹化学与应用化学联合会(IUPAC)所属 无机化学命名委员会通过“原子序数大于100的元素命名建议”。 它的命名法如下:
(1)用下列表示数目的词根,由元素的原子序数确定元素的名称。
0:nil 1 : un 2:bi
3:tri 4: quad 5:pent
6:hex 7:sept 8:oct
9:enn
(2)将表示数目的词根按原子序数相联,再加词尾ium,就得该元素的名称。例如,原子序数为104的元素名称是Unnil- quadium,即un.+ nil+quad
(3)元素符号由组成元素名称的代表数字中的三个词根的第一个字母表示,如104号元素的符号是Unq。
(4)下面列出一些元素的名称和符号。
原子序数 元素名称 元素符号
101 Unnilunium Unu (即 Md)
102 Unnilbium Unb(即 No)
103 Unniltrium Unt (即 Lr)
104 Unnilquadium Unq
105 Unnilpentium Unp
106 Unnilhexium Unh
107 Unnilseptium Uns
,108 Unniloctium Uno
.109 Unnilennium Une
110 Ununnilium Uun
注:当bi或tri出现在ium以前时,省去前二者中的那个i。当enn出现在nil以前时,省去enn中最后那个n。
3.元素符号表示一种元素,还可以表示这种元素的一个原 子。在热化学方程式中,元素符号还表示这种元素的1摩原子。 大多数固态单质也常用元素符号表示。
第一周期元素:1 氢(qīng) 2 氦(hài)
第二周期元素:3 锂(lǐ) 4 铍(pí) 5 硼(péng) 6 碳(tàn) 7 氮(dàn) 8 氧(yǎng) 9 氟(fú) 10 氖(nǎi)
第三周期元素:11 钠(nà) 12 镁(měi) 13 铝(lǚ) 14 硅(guī) 15 磷(lín) 16 硫(liú) 17 氯(lǜ) 18 氩(yà)
第四周期元素:19 钾(jiǎ) 20 钙(gài) 21 钪(kàng) 22 钛(tài) 23 钒(fán) 24 铬(gè) 25 锰(měng) 26 铁(tiě) 27 钴(gǔ) 28 镍(niè) 29 铜(tóng) 30 锌(xīn) 31 镓(jiā) 32 锗(zhě) 33 砷(shēn) 34 硒(xī) 35 溴(xiù) 36 氪(kè)
第五周期元素:37 铷(rú) 38 锶(sī) 39 钇(yǐ) 40 锆(gào) 41 铌(ní) 42 钼(mù) 43 锝(dé) 44 钌(liǎo) 45 铑(lǎo) 46 钯(bǎ) 47 银(yín) 48 镉(gé) 49 铟(yīn) 50 锡(xī) 51 锑(tī) 52 碲(dì) 53 碘(diǎn) 54 氙(xiān)
第六周期元素:55 铯(sè) 56 钡(bèi) 57 镧(lán) 58 铈(shì) 59 镨(pǔ) 60 钕(nǚ) 61 钷(pǒ) 62 钐(shān) 63 铕(yǒu) 64 钆(gá) 65 铽(tè) 66 镝(dī) 67 钬(huǒ) 68 铒(ěr) 69 铥(diū) 70 镱(yì) 71 镥(lǔ) 72 铪(hā) 73 钽(tǎn) 74 钨(wū) 75 铼(lái) 76 锇(é) 77 铱(yī) 78 铂(bó) 79 金(jīn) 80 汞(gǒng) 81 铊(tā) 82 铅(qiān) 83 铋(bì) 84 钋(pō) 85 砹(ài) 86 氡(dōng)
第七周期元素:87 钫(fāng) 88 镭(léi) 89 锕(ā) 90 钍(tǔ) 91 镤(pú) 92 铀(yóu) 93 镎(ná) 94 钚(bù) 95 镅(méi) 96 锔(jú) 97 锫(péi) 98 锎(kāi) 99 锿(āi) 100 镄(fèi) 101 钔(mén) 102 锘(nuò) 103 铹(láo) 104 鑪(lú) 105
【定义】
1.用价键表示分子各个直接相连原子的结合次序和电子的 共用情况,这种式子叫做结构式。
2.化学式的一种,用元素符号通过价键相互连接表示物质分子中原子的排列顺序和结合方式的式子。
【说明】
1.结构式是一种化学式。它用短线“一”代表一对共用电子, 该短线叫做价键。结构式是表示物质分子的化学结构的式子,并不表示分子的空间结构,例如甲烷分子的空间结构是正四面体。
2.结构式比电子式能更方便地表示原子间的连接顺序,因此 用结构式表示有机物分子就显得十分重要。
3.结构式在一定程度上反映分子的结构和性质。例如,下式既表示丙烯分子中电子的共用情况和C、H原子间的连接顺序, 又表示该分子内含有一个碳碳双键(>C=C<),因而具有烯烃的性质。 -
4.在有机化舍物中同分异构现象比较普遍D用分子式不能区别分子组成相同而结构相异的物质。例如,分子式是C2H4O2的化合物有以下两种:
【原子结构示意图】又叫原子结构简图。用以表示原子的核电荷数和核外电子在各电子层上的排布的图式。例如,钠的原子结构示意图是
圆圈及其中数字表示钠原子核及核内有11个质子,弧线表示电子层(钠有3个电子层),弧线上的数字表示该电子层的电子数(钠原子K层有2个电子,L层有8个电子,M层有1个电子)。原子结构示意图比较直观,易为初学者接受。但不能把弧线看作原子核外电子运行的固定轨道。
【环己烷】分子式C6H12,分子量84.16,无色流动性液体,有汽油气味。存在于某些石油中。熔点6.47℃,沸点80.7℃,易挥发,易燃烧,其蒸气与空气形成爆炸性混和物,爆炸极限1.3~8.4%,不溶于水,溶于乙醇、乙醚、丙酮、苯、四氯化碳等有机溶剂。环己烷有“椅式”和“船式”两种构象存在,在涂料工业中广泛地用作溶剂,也是树脂、脂肪、石蜡油类的良好溶剂。更重要的是环己烷经氧化可生成环己醇、环己酮和己二酸等生产尼龙-6或尼龙-66的原料。环己烷可由石油馏分中回收或苯经催化氢化而制得。
【苯磺酸】分子式C6H6O3S,分子量158.17。无色针状或片状晶体。含有1.5分子结晶水的苯磺酸易潮解,其熔点43~44℃。无水物的熔点50~51℃。是强酸,酸性近于硫酸,在分离和保存时常变为钠盐。加热会分解,易溶于水、乙醇,微溶于苯,不溶于乙醚和二硫化碳。与氢氧化钠混和加热熔融制取苯酚,也用来制取间苯二酚;用作酯化反应和脱水反应中的催化剂。可由苯与发烟硫酸发生磺化反应制备。
【苄基氯】分子式C7H7Cl,分子量126.58,结构简式为:
无色液体,有刺激性气味,有折光性。熔点-43℃,沸点179.4℃,密度(25/4℃)1.100克/厘米3。不溶于水,溶于乙醇、乙醚、氯仿等有机溶剂。其蒸气具有催泪作用,能刺激皮肤和呼吸道,与水蒸气一起挥发。在有铁质存在下加热易分解。是制造染料、香料、药物、合成树脂的原料。在光照射下,将氯气通入沸甲苯中,再经减压分馏而制得。
【顺反异构】顺反异构即几何异构。通常存在于含有双键或环架结构的分子中,双键中的π键不能旋转,环架结构也阻碍了C-C单键的旋转,不同取代基在空间可形成不同的分布而产生异构,顺反异构分顺式和反式两种。若相同的原子或取代基在双键或碳架规定平面的同一侧叫顺式,若位于两侧叫反式。如含C=C双键和ab两种原子团
具体的物质象丁烯二酸,有顺丁烯二酸和反丁烯二酸:
含环架结构的象1,4一二甲基环乙烷:
【定义】分子式相同而分子结构和性质不同的化合物,叫做同分异构体。这一现象叫做同分异构现象。
【说明】
同分异构现象是由于分子中各原子可以有不同的结合顺序和方式或不同的空间排列和定向所引起的。同分异构现象可分成结构异构和立体异构。
1.结构异构是因分子中各原子的结合顺序和方式不同而产生的异构,其中包括碳架异构、位置异构、类别异构等。
2. 立体异构是因为分子中各原子的空间排列和定向不同而产生的异构,其中包括顺反异构、对映异构和构象异构。
分子中存在双键或环状结构,使分子中某些原子或基团具有不同的空间位置,这样产生的异构,叫做顺反异构。
分子中的中心碳原子周围的四个不同原子或基团有两种互为镜象而不能彼此重合的四面体空间构型,这种异构叫做对映异构。
围绕单键旋转向产生的分子中的原-f-或基团在空间的排列不同,这样产生的异构叫做构象异构。
【定义】表示原子或离子最外层电子结构的式子。原子的电子式是在元素符号的周围用小黑点(或×)表示原子的最外层电子,例如钠原子的电子式为Na·。离子的电子式与原子的电子式的写法略有不同,简单阳离子是由原子失去最外层电子后形成的,一般用离子符号表示,例如Na+ 、Mg2+ 。简单阴离子和带电的原子团的电子式必须加方括号,并在括号的右上角标出该离子所带电荷的电性和电量,
例如氢氧根离子的电子式为
运用电子式还可以表示共价化合物分子、离子化合物以及烃基和官能团等结构,例如NH3、C2H2、Na2O2、Na+ 、—C2H5、-OH的电子式分别为:
由多个原子组成的化合物或基团的电子式中,元素符号周围小黑点的总数应该等于电子式中所有原子最外层电子数之和。
【说明】
1.电子式是美国科学家路易斯(Gilbert Newton Lewis,1875~1946)首先提出的,所以又叫路易斯式。
2.电子式一般只适用于表示主族元素的原子或离子,以及由它们构成的离子化合物和共价化合物。
3.用电子式可以比较简便和形象地表示离子化合物和共价分子的形成过程。
【定义】表示电解质离解成自由离子的式子。
【说明】
1.强电解质(强碱、强酸和大部分盐类)在水溶液中完全电离。它的电离方程式用=或→表示。
NaOH=Na+ +OH- 或NaOH→Na+ +OH-
2.硫酸是强电解质,一级电离完全,而二级电离不完全(K2=1.2×10-2 ),所以硫酸的电离方程式是
H2SO4=H+ +HSO4-
HSO4- H+ +SO42-
在中学化学教学中简化为H2SO4=2H+ +SO42-
3. 弱电解质(弱酸、弱碱和个别盐类)在水溶液中仅部分电离,分子和离子之间存在电离平衡。所以电离方程式中常用表示。
例如,醋酸的电离方程式是:
CH3COOHCH3COO- +H+
4.在电离方程式中,阳离子带的正电荷总数和阴离子带的负电荷总数的绝对值相等。
5.电解质在水溶液中电离出的离子,都以水合离子的形式存在。例如,电离出的H+ 离子主要以H3O+ ([H·H2O]+ )等形式存在于水溶液中。由于不能确定水分子的数目,有时用符号H+ (aq)表不水合的氢离子。为了简便,在通常的电离方程式中仍然用简单离子符号书写,如H+ 、K+ 、Cl- 等。
6.在水溶液中,强电解质完全电离,用等号表示,例如:
弱电解质部分电离,存在电离平衡,用可逆号表示,例如:
多元弱酸的电离是分步进行的,以第一步为主,例如:
多元弱碱的电离也是分步进行的,一般简化为一步,例如:
注意区别:①强酸的酸式盐和弱酸的酸式盐表示方法不同,例如:
②复盐和络盐表示方法不同,例如:
多数离子化合物在熔化时也能发生电离,表示方法如下:
【电极反应式】在电化学装置中,表示原子或离子在电极上得失电子,发生氧化或还原反应的式子。例如,Zn、Cu、稀H2SO4组成的原电池,电极反应式如下:
负极:Zn—2e-=Zn2+ (氧化反应)
正极:2H+ +2e-=H2↑ (还原反应)
再如,用石墨做电极,电解硝酸银溶液的电极反应式如下:
阳极:4OH-—4e-=2H2O+O2↑ (氧化反应)
阴极:4Ag++4e-=4Ag (还原反应)注意:写电极反应式时,两个电极上得失电子总数必须相等。将两个电极反应式相加,可得到总反应式,例如,上述电解硝酸银溶液的总反应式如下:
【定义】
1.标明伴随化学反应放出或吸收热量的化学方程式,叫做热化学方程式。
2.表示化学反应和热效应关系的化学方程式,叫做热化学方程式。
例如:
2H2(气)+O2(气)=2H2O(气);ΔH=-483.6千焦/摩尔
2H2(气)+O2(气)=2H2O(液);ΔH=-517.6千焦/摩尔
【说明】
书写热化学方程式时应注意:
①热化学方程式的系数只表示各反应物和生成物的物质的量,不表示微粒数,必要时,系数可用分数表示。
②化学反应的热效应与反应物和生成物的状态有关(如上例),书写时必须将每种物质的状态注在化学式后面。
③ΔH为焓变,如果放热用“-”表示,吸热用“+”表示;数值的多少必须与化学方程式中所表示的物质的量对应。
④化学反应的热效应还与外界条件有关,应在方程式的等号上注明温度和压强。若不注明,则表示温度为298K、压强为1.013×105 帕。
【离子方程式】用实际参加反应的离子符号表示离子反应的式子。它不仅表示一定物质间的某个反应,而且表示了所有同一类型的离子反应。
书写离子方程式的基本步骤为:
①写出有关反应的化学方程式。
②可溶性的强电解质(强酸、强碱、可溶性盐)用离子符号表示,其它物质仍用分子式表示。微溶的强电解质应看其是否主要以自由离子形式存在,例如,石灰水中的Ca(OH)2写离子符号,石灰乳中的Ca(OH)2用分子式表示。
③删去两边未参加反应的离子。
④检查式子两边的各种原子的个数及电荷数是否相等。
各种类型的离子方程式可按下列方法书写:①络合反应、盐类的水解反应应直接写离子方程式。例如,氯化铁溶液跟硫氰化钾溶液反应:
Fe3+ +SCN- [Fe(SCN]2+
碳酸钠水解:
②简单的复分解反应可直接写出离子方程式。注意:当反应物一边或生成物一边有多种物质需用分子式表示时,应当写全,不可遗漏。例如,氢氧化钡与硫酸铵溶液共热:
可溶性酸式盐跟强碱的反应比较复杂,应按基本步骤书写,否则易出错误。例如,磷酸二氢钙溶液与足量烧碱溶液反应,以下离子方程式是错误的:
应先写出化学方程式:
3Ca(H2PO4)2+12NaOH=Ca3(PO4)2↓+12H2O+4Na3PO4
再删去Na+ :
③氧化还原类型的离子反应应按基本步骤书写,否则会出现多种错误。例如,铁跟氯化铁溶液反应,以下写法是错误的(两边电荷不等):
Fe+Fe3+ = 2Fe2+
应先写出化学方程式:Fe+2FeCl3= 3FeCl2
再删去未反应的Cl- :Fe+2Fe3+ = 3Fe2+
书写离子方程式时要注意以下几点:
(1)把易溶的强电解质写成离子形式,难溶物质、弱电解质以及气体、单质、氧化物都用化学式表示,再删去没有参加反应的离子。
(2)书写离子方程式时要遵循质量守恒定律和离子电荷守恒(即离子方程式两边离子的电荷总数相同)的原则。例如,Fe2+ +Cl2=Fe3+ +2Cl- 是错的,应改正为2Fe2+ +Cl2=2Fe3+ +2Cl-
(3)盐类水解是酸碱中和反应的逆反应,一般不能进行到底,所以盐类水解的离子方程式常用表示。
3.固体电解质之间的反应,如用固体Ca(OH)2和固体NH4Cl制取NH3的反应,一般不用离子方程式,而用化学方程式表系。
【核外电子排布式】表示原子核外电子在每个电子层中各个亚层排布情况的式子。书写电子排布式时,要从左向右按电子层能量递增的顺序排列;每个电子层中的亚层是按s p d f能量递增的顺序排列;各电子亚层上的电子数标在亚层符号的右上角。
例如氮原子的电子排布式为1s22s22p3,它表示氮原子核外7个电子的排布情况,第一电子层(1s2)2个、第二电子层(2s22p3)5个。铁原子的电子排布式为1s22s22p63s23p63d64s2,铁原子核外26个电子,第一电子层(1s2)2个、第二电子层(2s22p6)8个、第三电子层(3s23p63d6)14个、第四电子层(4s2)2个。
电子排布式的书写顺序与电子填入轨道的顺序不同,电子填入轨道的顺序是按能级递增的顺序,例如铁原子的8个价电子是先进入能量较低的4s能级,后进入能量较高的3d能级。铁原子的电子排布式是按电子层顺序先写3d6,后写4s2。
已知元素的核外电子排布式,便可推断元素的原子序数、核外电子总数、价电子构型以及它在周期表中的位置。元素所在的周期数等于电子排布式中最高的电子层数,元素所在的族数等于价电子数,例如氮元素处在第2周期、ⅤA族,铁元素处在第4周期、Ⅷ族。
【离子反应】电解质在溶液里所发生的离子间的反应。有两类情况:
(1)电解质在溶液里发生的离子互换反应,属于非氧化-还原反应,反应发生的条件是生成物之一是难溶物质,易挥发性物质或极难电离的物质,这类离子反应的特征一般是朝着减小离子浓度的方向进行。
例如:Ag++Cl- = AgCl↓
(2)属于氧化-还原反应的离子反应,
例如:Zn+2H+ =Zn2+ +H2↑
【定义】 结构相似而分子组成相差一个或若干个CH2原子团的一系列化合物,叫的一系列化合物,叫做同系列。同系列中的各化合物互称同系物。
【说明】
1.CH2叫做系(列)差。例如,甲烷(CH4)和丁烷(C4H10)相差3 个系(列)差(3 CH2)。
2.同系列中的各同系物可用同一个通式表示。例如,甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)等都符合CnH2n+2通式,形成烷烃同系列。
3.同系物之间化学性质基本相似,物理性质(如熔点、沸点、密度)随着碳原子个数的递增而呈现有规律的变化。
4.如甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)、丁烷(C4H10)等,其中甲烷与正丁烷互为同系物,甲烷与异丁烷也互为同系物。乙烯、丙烯、丁烯等互为同系物。乙烯(CH2=CH2)和丁二烯(CH2=CH-CH=CH2)的分子虽都呈链状,都有双键,但分子组成不符合相差2个CH2原子团,故不属同系物。又如乙酸乙酯和三乙酸甘油酯虽都属于酯类,但分子组成不符合相差若干个CH2原子团,故也不属同系物。
【硝基化合物】烃分子中的氢原子被硝基(一NO2)取代所生成的化合物,叫做硝基化合物。
说明
1.硝基化合物和硝酸酯分子中都含有硝基,但它们是两类不的有机物。硝基化合物(R一NO2 )分子中的硝基跟烃基中的碳原子连接,而硝酸酯(R-O-NO2)分子中的硝基通过氧原子跟烃基中的碳原子连接。一硝基化合物(R-NO2)和亚硝酸酯(R-ONO)互为同分异构体。
2.硝基化合物一般有颜色,能被多种试剂还原。在酸性条件下,硝基还原成氨基。例如,硝基苯(C6HsNO2)还原成苯胺(C6H5NH2)。在碱性条件下比较复杂,会发生还原和缩合反应,形成一系列的含氮有机化合物。芳香族多硝基化合物有强氧化性,能用作炸药(如TNT)。【定义】是有机化合物的简称。指含碳元素的化合物。组成有机物的元素除碳以外,通常还含有氢、氧、氮、硫、磷、卤素等。以前,把动植物等有机体中取得的糖类、蛋白质、油脂等物质叫有机物,到19世纪20年代,科学家先后从非生物体内取得的物质合成了许多有机物,如尿素、醋酸等,从而打破了有机物只能从有机体中取得的概念,但习惯上一直沿用有机物这个名称。有机物一般难溶于水而易溶于有机溶剂;熔点低;绝大多数有机物受热容易分解,而且容易燃烧;有机物的化学反应比较慢,并常伴有副反应发生。有机物一般可以分为烃和烃的衍生物两大类,因此有机物也就是烃和烃的衍生物的总称。
【说明】
1.有机物是有机化合物的简称。目前人类已知的有机物达900多万种,数量远远超过无机物。
2.早先,人们已知的有机物都从动植物等有机体中取得,所以把这类化合物叫做有机物。到19世纪20年代,科学家先后用无机物人工合成许多有机物,如尿素、醋酸,脂肪等等,从而打破有*机物只能从有机体中取得的观念。但是,由于历史和习惯的原因,人们仍然沿用有机物这个名称。
3.有机物一般难溶于水,易溶于有机溶剂,熔点较低。绝大多数有机物受热容易分解、容易燃烧。有机物的反应L般比较缓慢,并常伴有副反应发生。
4.有机物种类繁多,可分为烃和烃的衍生物两大类。根据有机物分子中所含官能团的不同,又分为烷、烯、炔、芳香烃和醇、醛、羧酸、酯等等。根据有机物分子的碳架结构,还可分成开链化合物、碳环化合物和杂环化合物三类。
5.有机物对人类的生命、生活、生产有极重要的意义。地球上所有的生命体中都含有大量有机物。
【烃的衍生物】烃分子里的氢原子被其它原子或原子团所取代,生成一系列新的有机物。这些有机物,从结构上说,都可以看做是由烃衍变而来的,所以叫做烃的衍生物。不同的衍生物具有不同的化学性质。烃的衍生物种类很多,如卤代烃、醇、酚、醚、醛、酮、羧酸、酯、硝基化合物等。从结构上看,它们的衍变关系是:
【官能团】是有机化合物分子中能够反映特殊性质的原子或原子团。例如,羧酸类
酸性,后者呈碱性。又如醇类分子中的羟基—OH反映醇的特性,烯烃分子中
据之一。
重要的官能团如下表:
【硅烷】硅原子跟碳原子结构相似,可跟氢组成一系列硅氢化合物。硅氢化合物总称为硅烷,通式是SinH 2n+2,目前已制得的有一硅烷SiH4也叫甲硅烷到六硅烷Si6H14共六种。
甲硅烷:SiH4,无色无臭气体、密度1.44克/升,熔点-185℃,沸点-111.8℃,不溶于水。
乙硅烷:Si2H6,无色无臭气体,密度2.87克/升,熔点-132.5℃,沸点-14.5℃,微水解。
其它硅烷是液体。硅烷都能溶于有机溶剂,如乙醇、苯、二硫化碳等。硅烷比烷烃化学性质活泼。所有硅烷热稳定性都很差。将高硅烷适当加热,分解为低硅烷。低硅烷(如SiH4)在温度高于500℃时分解为硅和氢气。有强还原性。在空气中能自燃,生成二氧化硅和水,并放出大量的热,可被一般氧化剂氧化,如:SiH4+2KMnO4=2MnO2↓+K2SiO3+H2↑+H2O
室温下跟卤素发生爆炸性的反应。在强碱溶液中水解为硅酸盐和氢气。在卤化铝催化作用下,跟干燥的卤化氢反应,生成卤硅烷。用硅化镁跟盐酸反应,立即有气体放出,这种气体为硅烷的混合物,其中大部分为甲硅烷。还可用硅化镁跟溴化铵在液氨中反应制得。混合气体经液化后再分馏,得到不同硅烷。
![]() |
硅烷处理剂 |
B2H6+6H2O=2H3BO3↓+6H2↑
乙硼烷有强还原性,可作还原剂。它跟氢化锂反应生成更强的还原剂硼氢化锂,用于有机合成:
乙硼烷可用硼的卤化物在乙醚溶液中跟氢化铝锂LiAlH4反应制得。将乙硼烷加热到100~250℃得其它高硼烷。
黄褐色或黑色的块状固体,纯品为无色晶体(含CaC2较高的是紫色)。密度2.22克/厘米3,熔点447℃、沸点2300℃,遇水立即发生激烈反应,生成乙炔,并放出热量。
CaC2+2H2OCa(OH)2+C2H2↑
因电石中常含有砷化钙(Ca3As2)、磷化钙(Ca3P2)等杂质,与水作用时同时放出砷化氢(AsH3)、磷化氢(PH3)等有毒气体,因此使用由电石产生的乙炔有毒(须通过浓H2SO4和重铬酸钾洗液除去)。CaC2能导电,纯度越高,导电越易。焦炭和生石灰在电炉中反应制得。
用于制取乙炔气、氰氨化钙(CaCN2)和有机合成的重要原料,制造石灰氮肥料、金属切割焊接用乙炔气等。贮存在阴凉、通风、干燥处,严格防水、防潮(它极易吸收空气中水分),应与可燃物隔离存放。
【乙炔的结构】
乙炔分子里碳碳叁键的键能是812千焦/摩,比三个碳碳单键的键能之和要小得多(也比一个单键和一个双键键能之和小)。叁键的键长是1.20×10-10米,比单键或双键的键长都短。乙炔分子里C≡C键跟C——H键间的夹角是180°,即乙炔分子里的两个碳原子和两个氢原子处在一条直线上。乙炔分子里每个碳原子,是以一个2s轨道和一个2p轨道进行杂化,形成两个能量相等的sp杂化轨道。这两个sp杂化轨道的对称轴在同一条直线上。每个碳原子各以一个sp杂化轨道跟氢原子的一个1s轨道进行重叠而形成一个碳氢的σ键。同时又各以其另一个sp杂化轨道相互重叠形成一个碳碳的σ键。在两个碳原子里还各有另外两个p轨道没有参加杂化,它们的电子云互相垂直,同时也跟碳碳间σ键的对称轴垂直。这样就在4个p电子之间形成两个π键,这两个π键是互相垂直的。乙炔分子里的C≡C叁键是由一个σ键和两个相互垂直的π键所组成。已知π键的键能小于σ的键能,所以在一定条件下,π键容易断裂,容易发生氧化反应、加成反应等。
【乙炔的化学性质】
乙炔和其它类烃相比,稳定性较差,易分解成碳和氢。乙炔分子分解时放出大量热,其热量足以使乙炔发生连锁反应,故乙炔在加压、加热时可能发生爆炸。某些金属及其氧化物对乙炔的分解有明显催化作用,而且氧化物远比纯金属剧烈。乙炔与金属铜接触产生高爆炸性的乙炔钢。在过热或撞击下,少量乙炔铜爆炸会迅速引起大量乙炔发生爆炸,故在生产乙炔和乙炔加工装置中,通常不允许使用铜和铜合金材料制造管道、阀门等。乙炔燃烧时,火焰明亮有浓厚黑烟。乙炔与空气能形成爆炸混合物,其爆炸范围较其它可燃气体都大。乙炔与氯气混合,在光照下即发生爆炸。乙炔的性质活泼,容易跟许多物质发生化学反应,如受酸性KMnO4溶液氧化,容易发生加成反应(Br2、H2、HCl等)和加聚反应等。
【乙炔的用途】
乙炔的化学性质很活泼,可跟许多物出发生化学反应,衍生出上千种有机化学品。如与氯化氢发生加成反应生成氯乙烯,氯乙烯作为单体经加聚反应得到聚氯乙烯;乙炔跟乙酸反应得到乙酸乙烯酯,可进一步制得维尼纶;乙炔二聚得乙烯基乙炔,进而跟氯化氢加成得氯丁二烯,氯丁二烯经加聚反应制得氯丁橡胶;乙炔跟氰化氢加成得丙烯腈,丙烯腈经加聚反应制得聚丙烯腈等。乙炔在纯氧气中燃烧所产生的温度很高,用于气焊和气割。
【乙炔的实验室制法】
实验室中常用电石跟水反应制取乙炔。电石中因含有少量钙的硫化物和磷化物,致使生成的乙炔中因混有硫化氢、磷化氢等而呈难闻的气味。在常温下,电石跟水的反应是相当激烈的,可用分液漏斗控制加水量以调节出气速度。也可以用饱和食盐水代替水,这样,可以使反应较平稳。通常,乙炔发生装置用烧瓶(或广口瓶)和插有分液漏斗及直角导气管的双孔塞组成。检查装置的气密性良好后把几块电石放入烧瓶,从分液漏斗滴水(或饱和食盐水)即产生乙炔。如果把电石跟水的反应式写成:
CaC2+H2O→C2H2↑+CaO
是错误的。因为在有水存在的情况下,CaO不可能是钙的最终产物,而Ca(OH)2(CaO水化)是最终产物才是合理的。正确的化学式应是:
CaC2+2H2O→C2H2↑+Ca(OH)2
为了得到较纯净的乙炔,可以把从发生器出来的气体先经CuSO4溶液洗气再收集。乙炔只微溶于水,应排水收集。用电石跟水反应制乙炔不应使用启普发生器,块状电石和水在常温下即能发生反应,表面上似乎符合启普发生器的使用条件,但当关闭启普发生器的活塞时,乙炔气虽能把水压入球形漏斗以使电石跟水脱离接触,但集存在球体内的大量水蒸气(电石跟水反应放热)却仍在缓缓继续跟电石发生反应,就是说,关闭活塞后,乙炔不能完全停止发生。这样,乙炔将缓缓从球形漏斗的上口间断逸出。平时,我们总能闻到电石有难闻的气味,就是因为电石跟空气里的水蒸气反应的结果。如果小量制取乙炔时,也可以用试管配单孔塞作反应容器,但应在试管口内松松塞一团棉花,以阻止泡沫进入导气管。
【乙烯的结构】
实验表明,乙烯分子里的C=C双键的键长是1.33×10-10米,乙烯分子里的2个碳原子和4个氢原子都处在同一个平面上。它们彼此之间的键角约为120°。乙烯双键的键能是615千焦/摩,实验测得乙烷C—C单键的键长是1.54×10-10米,键能348千焦/摩。这表明C=C双键的键能并不是C—C单键键能的两倍,而是比两倍略少。因此,只需要较少的能量,就能使双键里的一个键断裂。这是乙烯的性质活泼,容易发生加成反应等的原因。
在形成乙烯分子的过程中,每个碳原子以1个2s轨道和2个2p轨道杂化形成3个等同的sp2杂化轨道而成键。这3个sp2杂化轨道在同一平面里,互成120°夹角。因此,在乙烯分子里形成5个σ键,其中4个是C—H键(sp2—s)1个是C—C键(sp2—sp2);两个碳原子剩下未参加杂化的2个平行的p轨道在侧面发生重叠,形成另一种化学键:π键,并和σ键所在的平面垂直。如:乙烯分子里的C=C双键是由一个σ键和一个π键形成的。这两种键的轨道重叠程度是不同的。π键是由p轨道从侧面重叠形成的,重叠程度比σ键从正面重叠要小,所以π键不如σ键牢固,比较容易断裂,断裂时需要的能量也较少。
【乙烯的物理性质】
乙烯在常温常压下为无色气体,稍有香甜气味,比空气稍轻,难溶于水。沸点(常压)-103.71℃,熔点—169.15℃。
【乙烯的化学性质】
乙烯可燃,燃烧时火焰明亮。与空气形成爆炸性混合物。爆炸极限:下限3~3.5%,上限16~29%。由于乙烯分子中存在双键,性质活泼,容易进行加成反应。氧化反应和加聚反应。如:
【乙烯的实验室制法】
实验室一般是在加热条件下,用浓硫酸使乙醇脱水制取。其中浓硫酸起脱水剂和催化剂作用。在约140℃时,乙醇脱水生成乙醚(C2H5)2O;在约170℃时,生成乙烯。
这是在有机化学反应中,反应物相同,反应条件不同而生成物不同的典型例之一。实验装置如图。检查装置气密性后,先在烧瓶中加入10毫升乙醇,然后分批缓缓加入浓硫酸共约30毫升。在乙醇中加入浓硫酸时,由于发生化学作用而放大量热,要冷却后再继续加浓硫酸,防止乙醇大量气化。再向烧瓶里加入几片碎瓷片。为了控制混合液受热温度在170℃左右,须把温度计的水银球浸入混合液中。加热时,要使混合液的温度迅速越过140℃温度区,这样,可以减少副产物乙醚的生成。混合液的温度达到170℃时,即有乙烯产生。在加热过程中,混合液的颜色会逐渐变棕色以至棕黑色。这是由于乙醇部分发生碳化的结果。在170℃时,生成的气体并非纯净的乙烯,其中常杂有少量SO2。由于在加热条件下,浓硫酸除使乙醇发生脱水反应外,还会使乙醇(或其它生成物)发生氧化反应,浓硫酸还原产生SO2。要获得较纯净的乙烯,可以把由烧瓶出来的气体先经10%NaOH溶液洗气,然后再收集。乙烯难熔于水,应该用排水法收集。收满乙烯的集气瓶,盖好毛玻璃片后倒放在实验桌上。停止加热时,要先把导管从水槽里撤出,防止因烧瓶冷却使水倒吸。实验后,应待烧瓶里的残粥状黑色混合物以及温度计冷却后再清洗。
【苯的结构】
苯分子具有平面的正六边形结构。各个键角都是120°,六角环上碳碳之间的键长都是1.40×10-10米。它既不同于一般的单键(C—C键键长是1.54×10-10米),也不同于一般的双键(C=C键键长是1.33×10-10米)。从苯跟高锰酸钾溶液和溴水都不起反应这一事实和测定的碳碳间键长的实验数据来看,充分说明苯环上碳碳间的键应是一种介于单键和双键之间的独特的键。
为了表示苯分子结构的这一特点,常用下式来表示苯的结构简式。直到现在,凯库勒式的表示方法仍被沿用,但在理解上绝不应认为苯是单、双键交替组成的环状结构。
苯分子里6个碳原子的电子都以sp2杂化轨道相互重叠,形成6个碳碳的σ键,又各以1个sp2杂化轨道分别跟氢原子的1s轨道进行重叠,形成6个碳氢的σ键。由于是sp2杂化,所以键角是120°,并且所有6个碳原子和6个氢原子都是在同一个平面上相互连接起来的。
苯环上6个碳原子各有1个未参加杂化的2p轨道,它们垂直于环的平面,并从侧面相互重叠而形成一个闭合的π键,并且均匀地对称分布在环平面的上方和下方。通常把苯的这种键型称为大π键。苯的大π键的形成使π键电子云为6个碳原子所共有,因而受到6个碳原子核的共同吸引,彼此结合得比较牢固。同时,苯的大π键是平均分布在6个碳原子上,所以苯分子中每个碳碳键的键长和键能是相等的。
【苯的物理性质】
苯在常温下为无色透明液体。密度(15℃)0.885克/厘米3,沸点80.10℃,熔点5.53℃,易挥发,有强烈芳香气味。有毒。难溶于水,易溶于乙醇、乙醚等有机溶剂。
【苯的化学性质】
苯的化学性质较稳定,对酸性KMnO4溶液和溴水均无反应。易燃,燃时有浓黑烟。苯的化学反应可分为三大类:取代反应,如硝化反应和磺化反应;加成反应,如在镍为催化剂作用下,苯跟H2反应生成环己烷;苯环破裂反应,如苯在V2O5催化剂作用和加热条件下,用空气氧化生成顺丁烯二酸酐:
通过这些反应,可由苯制成多种重要的化学中间体,它们是合成橡胶、塑料、纤维、洗涤剂、染料、医药、农药、炸药等的重要基础原料。
【苯的用途】
过去,苯的主要用途是作汽油的掺合物,以提高汽油的辛烷值。随着石油化学工业的发展,作为化工原料的苯的用量越来越大,其中制苯乙烯、环己烷和异丙苯所耗用的量最多,约占世界总产量的80%。我国70年代纯苯的产量为16.67万吨,1983年达42.5万吨。苯的主要用途见下表:
【烷 烃】
即饱和链烃。烷烃分子里的碳原子之间以单键结合成链状(直链或含支链)外,其余化合价全部为氢原子所饱和。烷烃包括一系列的化合物,有甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)、丁烷(C4H10)等。烷烃的通式为CnH2n+2。烷烃的物理性质,如沸点、熔点等随分子中碳原子数目依次增加而呈现有规律性的变化。烷烃几乎不溶于水,化学性质较稳定,不跟酸性KMnO4溶液反应;能燃烧;在一定条件能发生取代反应、裂解反应等。烷烃的主要工业来源是石油和天然气。天然气有干气、湿气之分,主要成分是甲烷。干气除用做燃料外,还可以生产碳黑以及生产合成氨、甲醇和其它有机化学工业品的原料气。湿气中含有较大量的乙烷、丙烷、丁烷等,除直接用作燃料外,也可经裂解生产乙烯做化工原料。石油经分馏,除获得大量燃料油、润滑油外,相当大的一部分进行化学加工,如C7—C9馏分经催化重整可得芳香烃,重质油经催化裂化再进行分离可得乙烯、丙烯、丁二烯等重要化工原料,用以生产塑料、橡胶等。
【烷烃的命名】
1892年日内瓦国际化学会议规定了一个命名原则,这个命名原则称为日内瓦命名法,也称国际命名法。我国的有机化合物命名原则是根据我国的文字特点,参照国际命名法制定的,称为系统命名法。烷烃的系统命名法如下:
1.从结构中选定最长的碳链为主链,根据这个碳链所含碳原子数称为“某”烷,并以它作母体。将主链以外的其它烷基看作取代基(或称支链)。但初学者容易出现的错误是习惯于把横向排列的碳链作为主链,其它作为支链。如:
误认为主链含4个碳原子,而实际是5个碳原子。
2.由距离支链最近的一端开始,将主链上的碳原子用1,2,3……,等数字依次编号,以确定支链的位置。如:
3.把取代基的名称写在烷烃名称前面,在取代基的前面用阿拉伯数字注明它在烷烃直链上的位置,并在号数后面连一短线。如:
4.如含有几个相同的取代基,则在取代基的前面用中文数字二、三、四等表明相同基的数目;如取代基不同,就把简单的写在前面,复杂的写在后面。如:
【环烷烃】组成烃分子的碳原子相互连接成环状的,叫环烃,在环烃分子中,碳原子之间全是单键相互结合的叫环烷烃,也叫饱和脂环烃。由三个、四个碳原子组成的环烷烃,环的稳定性较差,在一些试剂的作用下易发生开环反应。五个以上碳原子构成的环较稳定。这些环烷烃的性质与饱和链烃相似。以下是几种环烷烃的结构简式:
环烷烃的通式为CnH2n,它们与相应的烯烃属同分异构体。在环烷烃中,目前使用较多的是环己烷,常用为树脂的有机溶剂以及制尼龙—6的原料。
【不饱和烃】分子中含双键或叁键的烃。有双键的称烯烃(一个双键)或二烯烃(两个双键),有叁键的称炔烃。如:
不饱和烃的化学性质活泼,易受酸性KMnO4溶液氧化,易发生加成反应和加聚反应。
【定义】有机物分子中不饱和键跟其他原子或原子团结合,生成饱和(或较饱和)化合物,这种反应叫加成反应。。如
CH2CH2+Br2→CH2Br—CH2Br
CHCH+H2
CH2
CH2
【说明】
1、醛羰基和酮羰基的双键与烯烃的碳碳双键一样,其中一个键易断裂而发生加成反应,如:
如加成试剂为简单化合物时,分子中带正电性的原子加到羰基带负电性的氧原子上,带负电性的原子(或原子团)加到羰基的碳原子上,如:
2、加成反应主要有两种。一种是烯、炔烃等不饱和键上的加成反应。例如
【加聚反应】小分子的烯烃或烯烃的取代衍生物在加热和催化剂作用下,通过加成反应结合成高分子化合物的反应,叫做加成聚合反应,简称加聚反应。如:
单体可以是两种以上的不同物质,如:
在工业上,通过加聚反应制造合成塑料、合成橡胶等。
【高分子】高分子化合物的简称。亦称“大分子化合物”或“高聚物”。分子量可高达数千乃至数百万以上。可分为天然高分子化合物和合成高分子化合物两大类。天然高分子化合物如蛋白质、核酸、淀粉、纤维素、天然橡胶等。合成高分子化合物如合成橡胶、合成树脂、合成纤维、塑料等。
【说明】
①高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。
②高分子化合物由于分子量很大,分子间作用力的情况与小分子大不相同,从而具有特有的高强度、高韧性、高弹性等。
③高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。这种高分子在加热时可以熔融,在适当的溶剂中可以溶解。高分子化合物中的原子连接成线状但带有较长分支时,也可以在加热时熔融,在适当溶剂中溶解。
④如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。体型高分子加热时不能熔融,只能变软;不能在任何溶剂中溶解,只能在某些溶剂中溶胀。
⑤高分子化合物在自然界中大量存在,这种高分子叫天然高分子。在生物界中,构成生物体的蛋白质,纤维素;携带生物遗传信息的核酸;食物中的淀粉,衣服原料的棉、毛、丝、麻以及木材、橡胶等等,都是天然高分子。非生物界中,如长石、石英、金刚石等,都是无机高分子。天然高分子可以通过化学加工成天然高分子的衍生物,从而改变其加工性能和使用性能。例如,硝酸纤维素、硫化橡胶等。
⑥完全由人工方法合成的高分子,在高分子科学中占有重要的地位。这种高分子是由一种或几种小分子作原料,通过加聚反应或缩聚反应生成的,故也叫聚合物。用做原料的小分子称为单体,如由乙烯(单体)经加聚反应得聚乙烯(聚合物);由乙二醇(单体)和对苯二甲酸(单体)经缩聚反应生成聚对苯二甲酸乙二酯(聚合物)。
【定义】分子中含有-个或多个碳碳三键的碳氢化合物叫炔烃。
【说明】
1. 由于炔烃分子中在碳链分支的地方不可能有三键,炔烃没有顺反异构体,因此,炔烃的异构体数比相同碳原子数的烯烃少。
2. 炔烃的命名跟烯烃相似。
3. 炔烃跟烯烃的性质相似,也能发生亲电加成、聚合和氧化 反应。炔烃还能发生亲核加成(烯烃不易发生)。跟三键碳原子连接的氢原子(一C≡C—H)比较活泼(叫做活泼氢或炔氢),它能跟某些试剂反应,被金属取代而生成金属炔化物。
4.炔烃的组成通式为CnH2n-2。炔烃与碳原子数目相同的二烯烃互为同分异构体。炔烃分子中的碳碳叁键是官能团,性质活泼,容易发生氧化反应、加成反应和加聚反应。炔烃里最简单的是乙炔。乙炔在氧气中燃烧产生高达3500℃高温,用于金属的焊接或切割,大量的乙炔用为化工原料制聚氯乙烯、氯丁橡胶及醋酸等。实验室小量制乙炔,常用电石跟水反应排水收集。工业上用天然气中甲烷的部分氧化或石油高温裂解而得。
【定义】
1. 芳香烃指含有苯环的碳氢化合物(狭义)。
2. 芳香烃指含有4n + 2(n = 0、l、2、3……)个π电子的平面环状的共轭烯烃(广义),即苯型芳烃和非苯芳烃的总称。
【说明】
1. 通常所说的芳烃,一般指苯型芳烃。
2. 根据结构,芳烃分单环芳烃、多环芳烃和稠环芳烃三类。
a.单环芳烃 分子中只含一个苯环的芳烃。如苯、甲苯、二甲苯等。
b.稠环芳烃 两个或两个以上的苯环分别共用两个相邻的碳原子而成的芳烃。如萘、蒽、菲
蒽和菲互为同分异构体。
c.多环芳烃 如:
3.芳香烃主要来源于煤焦油和石油。芳香烃不溶于水,溶于有机溶剂。芳香烃一般比水轻;沸点随分子量的增加而升高。芳香烃易起取代反应,在一定条件下也能起加成反应。如苯跟氯气在铁催化剂条件下生成氯苯和氯化氢,在光照下则发生加成反应生成六氯化苯(C6H6Cl6)。芳香烃主要用于制药、染料等工业。
【1,3-丁二烯】在常温和常压下,1,3-丁二烯是无色而略带大蒜味的可燃气体。沸点-4.41℃,熔点-108.9℃。有毒,空气中含低浓度时,对粘膜有刺激性,高浓度有麻醉作用。与空气能形成爆炸混合物,爆炸极限2.16-11.47%(体积)。1,3-丁二烯微溶于水,易溶于苯、乙醚、氯仿、四氯化碳、汽油等有机溶剂。1,3-丁二烯的化学性质活泼,可使酸性KMnO4溶液或溴水褪色,更重要的是能发生加聚反应(自身1,4加成),化学方程式为:
这是用共轭二烯烃及其衍生物制造合成橡胶的反应基础。
【定义】有机化合物分子里的某些原子或原子团被其它原子或原子团所代替的反应。例如:
此外,磺化、酯化、酯水解等也是取代反应。
【说明】
1、取代反应与置换反应是完全不同的两类反应。置换反应都有单质参加反应,一般都涉及电子得失,并且反应生成物一定有一种单质;而取代反应是因有机物分子里原子间都以共价键结合,发生反应时仅是原子间的代换,不涉及电子得失,生成物一定没有单质出现。如苯跟溴(Fe为催化剂)本是取代反应,反应方程式如下写法则是错误的:
当然,有机物并不是不能发生置换反应,如:
2C2H5OH+2Na→2C2H5ONa+H2↑
则是置换反应。
2、根据反应历程,取代反应分下列三类。
【甲烷的物理性质】
甲烷是烃类分子组成最简单的物质,化学式CH4。甲烷是无色、无味的气体,难溶于水,密度(标准状况)0.717克/升,沸点-161.5℃,熔点-182.48℃。沼气、坑气、天然气的主要成分是甲烷。天然气中的甲烷经低温和加压液化,可以用特殊船舶越洋运输。
【甲烷的化学性质】
甲烷的化学性质甲烷性质稳定,跟酸性KMnO4溶液或溴水均不发生反应。在一定条件下,甲烷能发生卤代反应(Cl2,Br2)和热分解(分解成C、H2、C2H2等)等反应。甲烷燃烧时火焰呈青白色。点燃甲烷和空气的混合气会发生爆炸。甲烷在空气里的爆炸极限是5.3~14.0%(体积),在氧气里的爆炸极限是5.4~59.2%(体积)。【甲烷的实验室制法】
实验室用无水醋酸钠与碱石灰(固体NaOH与Ca(OH)2的混合物)共熔(约300℃以上)而产生。
先检查装置的气密性。把无水醋酸钠与碱石灰的混合物装入干燥试管中,试管口稍向下倾斜并固定在铁架台上。先用酒精灯均匀加热,再从试管底部固定加热,并缓缓向前移动灯焰。待试管里的空气赶尽后,用大试管排水收集,除非要求制取干燥的甲烷时,才用向下排空气法收集。收满甲烷的集气瓶,盖好毛玻璃片后应倒放在实验桌上,这样可以减少比空气轻的甲烷的逸失。停止加热时,要先把导管从水槽里撤出。碱石灰是由粉状生石灰与NaOH溶液作用后,在200~250℃干燥而成,这样能使NaOH与Ca(OH)2混合很均匀。其中Ca(OH)2的作用,除使NaOH分散细而匀,因而增加了NaOH与无水醋酸钠的接触面外,在加热时,还能减少熔融的NaOH对试管内壁的腐蚀。碱石灰极易吸湿,故在用无水醋酸钠和碱石灰混合加热制甲烷时,常有冷凝水出现,试管口如不稍向下倾斜,冷凝水将回流至灼热的试管底部而使试管炸裂。试管口稍向下倾斜时,冷凝水都汇集在试管口附近,不会回流。
【定义】分子中含有两个碳碳双键的链状或环状的碳氢化合物叫二烯烃。按分子结构,有环状二烯烃(如1,3-环戊二烯)和链状二烯烃。通常,二烯烃是指分子中含两个双键的不饱和链烃。
【说明】二烯烃分子中,由于两个双键的位置不同,有三种情况:
1.聚集双键二烯烃 如丙二烯CH2=C=CH2。这是一种无色气体,加热时,异构化成丙炔。
2.共轭双键二烯烃 两个双键被一个单键隔开的二烯烃。如1,3-丁二烯,1,3-戊二烯和异戊二烯。共轭二烯烃除具有和烯烃相似的化学性质外,主要特点是能发生1,4加成、聚合反应。
3.隔离双键二烯烃 两个双键被两个以上单键隔开的二烯烃。如1,4-己二烯(CH2=CH-CH2-CH=CH—CH3)。在二烯烃中,共轭双键二烯烃是最重要的一类,其中丁二烯和异戊二烯是合成橡胶的重要原料。
聚集双键二烯烃很不稳定。隔离双键二烯烃的性质基本上跟单烯烃一样。 共轭二烯烃除了有单烯烃的性质外,还能发生1,4 —加成、1, 4- 加聚和双烯合成反应。
【定义】分子中含有一个或多个碳碳双键的碳氢化合物叫做烯烃。
【说明】
1. 根据分子中含有碳碳双键的数目,烯烃分成单烯烃、二烯 烃等。开链的单烯烃常简称为烯烃,通式是CnH2n。闭链的单烯烃常简称为环烯烃,通式是CnH2n-2。
2. 烯烃的命名跟烷烃相似,但选择的主链中必须含有双键, 编号从近双键的一端开始,并注明双键的位次。
3. 烯径有烧烃没有的位置异构和顺反异构,所以烯烃的同分异构体数比相同碳原子的烷烃多得多。
4. 碳碳双键是一个σ键和一个π键构成。π键比较活泼,所以烯烃能发生加成、聚合、氧化等反应。在双键的影响下,跟双键相邻碳原子上的氢原子(α-氢原子)比烷烃容易发生取代和氧化反应。
5.与碳原子数目相同的环烷烃互为同分异构体。C2—C4的烯烃在常温常压下是气体,C5—C15的烯烃是液体,分子中含碳原子数更多的烯烃是固体。都可燃,火焰明亮。它们的物理性质,一般地随分子中碳原子数目增加而有规律地变化。烯烃分子中因含有双键,化学性质比烷烃活泼,容易发生氧化反应、加成反应和加聚反应等。从工业生产角度说,重要的是乙烯和丙烯,它们是制造合成纤维、合成树脂等的基础原料,工业上是由石油裂解生产的。
【萘】结构最简单、工业上最重要的稠环芳香烃,分子式C10H8,结构式为:
0.9625克/厘米3(100℃),不溶于水,易溶于苯、乙醚和热乙醇,易升华,有特殊气味。
化学性质与苯相似,取代反应比加成反应容易进行。萘的取代
例如:
萘比苯容易氧化:
邻苯二甲酸酐是制染料、药物、塑料的重要原料。工业上的萘大部分用于生产邻苯二甲酸酐。煤焦油中含萘可达10%,可以从煤焦油的中油馏分或右油产品裂化所得的高沸点镏分用结晶法分离获得。
【聚氯乙烯】
5万到12万。无固定熔点,有较好机械性能和电绝缘性能,对光和热的稳定性差,长时间光照及140℃以上高温会分解产生氯化氢。实际应用中需加入稳定剂,以提高对光和热的稳定性。该树脂耐化学腐蚀,不易着火。注塑时加入适当稳定剂、增塑剂和润滑剂,经加工成型可制成硬质热塑性塑料,以代替金属制成各种工业型材、管材、机械零件、绝缘板、印刷板及防腐材料等;软质热塑性塑料主要用做包装材料和防雨材料;还可制作人造革、地板、录音材料、合成纤维(氯纶)、家具,运动器材等。聚氯乙烯通常是由乙炔在金属卤化物催化下与氯化氢加成制得氯乙烯单体,再经加聚而得:
【实验式】 定义用元素符号表示化合物中各元素的原子(或离子)比, 这种式子叫做实验式(又叫最简式)。
说明
1. 非分子型化合物只能用实验式表示它的组成。例如, CaCl2是氯化钙的实验式,它仅表示氯化钙晶体中钙离子和氯离 子的比是1:2。
2. 有机化合物中的不同化合物,往往会有相同的实验式。例 如,甲醛(HCHO)、乙酸(CH3COOH)和葡萄糖(CsHGOs)的实验式都是CH2O。实验式相同的不同化合物,具有相同的元素质量比。
3. 已知化合物的分子量和最简式,可设求出这种化合物的分子式。例如乙酸的最简式是:CH2O (式量为30),分子量是60。 (CH20)n=60,11=60/30=2,所以乙酸的分子式是 C2H402。
【定义】
1.用元素符号表示物质组成的式子,叫做化学式。
2.用化学符号表示物质组成的式子,叫做化学式。
【说明】
1.化学式包括实验式(又叫最简式)、分子式和结构式等,这 是化学式的广义含义。有时又把实验式叫做化学式,这是化学式 的狭义含义。
2.定义1是初中刚学化学式时的定义,定义2更确切。
3.分子式仅适用于分子型化合物。例如,氧气、二氧化碳、硫酸、乙烯等可用分子式02、C02、H2S04、C2H4等表示。非分子型化合物不宜用分子式表示,只能用实验式表示。例如,氯化钠、硫 酸钾、氢氧化钡等都是离子化合物,并不存在单个的分子,只能用实验式NaCl、K2S04、Ba(OH)2等表示。这时经常把这些实验式叫做化学式。
4.按分子式对各原子相对原子质量(旧称原子量)进行加和的结果,称为相对分子质量(过去称分子量)。按化学式对各原子 相对原子质量进行加和的结果,则称为式量。
5.在初中化学教学中,不能区别各种物质是分子型化合物还是非分子型化合物,所以常统称为化学式。
6.对磷、硫、铜、铁等的固体单质(除碘外),常用元素符号表 示它的化学式。
【定义】
1.用分子式表示化学反应的式子。
2.用化学式表示化学反应的式子。
【说明】
1.化学方程式也叫化学反应式。
2.书写化学方程式时,必须反映事实,不能臆造,并应遵循质量守恒定律。
3.有的物质是由原子构成的,有的物质由离子构成,这些物质只有化学式而没有分子式。所以上述定义的第二种表述比第一种表述更确切。为此,我国中学化学教材中已开始用第二种表述替代原教材的第一种表述。
4.化学方程式中左边的反应物和右边的生成物中间以→或=相连,两边各种元素原子的总数应该相等。用可逆符号表示可逆反应,在讨论化学平衡时使用。用可逆符号
表示双向反应。
5.化学方程式不仅表明反应物和生成物,还表明它们之间发生反应时的计量关系。例如,
CO+O2=2CO2
质量比:56: 32: 88
物质的量的比:2:1: 2
气体体积比:2: 1 :2(相同状况下)
6.化学方程式中还有热化学方程式、离子方程式等。
化学教学中应注意不宜把化学方程式简称为方程式。
【定义】化合物分子中去掉一些原子或原子团后剩下不带电荷的部分,叫做基。基是原子团的一种类型。
【说明】
1. 有时把化合物分子中有特殊性质的一部分原子或原子团叫做基。有机化合物的官能团是决定物质主要特性的基,如醇的羟基(一OH)、羧酸的竣基(一COOH)。
2. 烷烃RH分子中去掉一个氢原子后留下的部分(R•)含有未成对的价电子,叫做烷基自由基,如CH3•是甲基自由基, CH2=CH-CH2•是丙烯基自由基。
3. 有些同核双原子分子均裂后得到单原子的自由基,例如 Cl:Cl→2C1•。产生自由基后可发生自由基型反应。
4. 上述定义中如果所剩下的部分是带有电荷的,就叫做根, 如氢氧根(OH-、铵根(NH4+)。
【定义】分子中两个原子之间由共用一对电子而形成的共价键叫做单键。
【说明】
1. 单键通常在代表两个原子的元素符号间画上一条短线表示。含有单键的有机物具有饱和性。
2. 单键通常是比较稳定的σ键。在环丙烷、环丁烷等张力较大的小环分子中的碳碳单键,不是以核间直线为对称轴的σ键,轨道重叠程度不及一般σ键,所以不稳定,容易断裂。
3. 碳、氮、氧等原子在形成单键时,通常利用杂化轨道。例如,在CH4、NH3和H2O分子中,碳、氮、氧都以sp3杂化轨道跟氢的s轨道重叠而形成σ键,NH3和H20分子中孤对电子处在未参加成键的sp3杂化轨道中。
【定义】分子中两个原子之间由共用两对电子而形成的共价键,叫做双键。
【说明】
1. 双键通常用两条短线表示。
2. 双键通常由一个σ键和一个π键构成的,但它不是单键的简单加和。例如,乙烯分子中碳碳双键,键能是598kJ/mol,而乙烷分子中碳碳单键,键能是374kJ/mol。这表明碳碳双键,键能小于碳碳单键键能的两倍。而丙酮分子中碳氧双键键能 (750kJ/mol)大于甲醚分子中碳氧单键的键能(360kJ/mol)的两 倍。
3. 一般情况下,双键不能自由转动,否则双键中的π键要断裂。双键的主要化学特性是其中的π键容易断裂而跟其他原子或原子团发生加成反应。
4. 在共轭二烯烃等有机物中,两个双键被一个单键间隔。最简单的二烯烃是1,3-丁二烯(CH2= CH—CH=CH2)。该分子中所有的原子处于同一平面上,4个碳原子都以sp2杂化轨道成键形成3个碳碳σ键和6个碳氢σ键。每个碳原子上的未杂化p轨道垂直于该平面,相互侧面交叠,形成一个π- π共轭体系,叫做共轭双键。
【定义】分子中两个原子之间由共用三对电子而形成的共价键,叫做叁键(曾用名:三键>。
【说明】
1.三键通常用三条短线表示。
2.三键通常是由二个σ键和两个π键构成的。但三键不是三个单键或单键和双键的简単加和。例如,C—N、C=N和C≡N 的键能分别是 305kJ/molv616kJ/mol 和 893kJ/mol
3.三键跟双键一样不能自由转动。三键的主要化学特性是其中的两个π键容易断裂而跟其他原子或原子团发生加成反应。
【定义】是由6个sp2杂化碳原子通过σ键和π键构成平面正六边形的碳环。
【说明】
1.苯分子中6个碳原子各以3个sp2杂化轨道分别跟相邻的两个碳原子的sp2杂化轨道和氢原子的s轨道重叠,形成6个碳碳σ键和6个碳氢σ键。两个sp2杂化轨道的夹角是120°,正适合6个碳原子处于一个平面上,形成一个正六边形的苯环。苯环上6个碳原子各有一个未杂化的2p轨道,6个2p轨道的对称轴都垂直于环的平面,并从侧面相互重叠,形成一个闭合的π键。它均匀地对称分布在环平面的上方和下方。通常把苯的这种键型叫做大兀键。苯分子中π键电子云完全平均化,使苯环中每个碳碳键的键长和键能都是相等的。这就说明苯分子的对称性和稳定性。
2.苯环的主要化学特性是环平面上下的π键电子容易受到亲电试剂的进攻,结果通常发生环上的取代反应。由于苯环较稳定,较难发生环上的加成反应。
![]() |
苯环 |
【有机物的命名】
1. 最初,人们根据有机物的来源和性质来命名。后来根据有 机物的结构特点来命名,例如用烷、烯、炔……等。这种命名法能反映有机物之间的相互关系。有机物的异构现象发现以后,为了区别各种异构物,在有机物名称前面加“正”、“异”、“新”……等冠 词,这就是有机物的习惯命名法。例如,C5H12的3种异构体分别命名为正戊烷、异戊烷和新戊烧(季戊烷)。
2. 有机物数目,繁多,结构和组成较复杂,命名相当困难。因此,1892年化学家在日内瓦召开一次国际化学会议,拟定有机物新的命名法,称为“日内瓦命名法”。以后经过国际纯粹与应用化学联合会的多次修订,1979年颁布新的有机化学命名法,即 IUPAC系统命名法。我国目前用的系统命名法,是根据国际上通用的原则,再结合我国文字的特点制订的。1980年中国化学会公布有机化学命名原则。
3. 有机物系统命名的基本要点是:
第一,给有机化合物的母体—链烃、环烃及杂环系统制定名称;
第二,按一定原则给母体 规定位次编排法;
第三,给官能团、取代基及其母体形成的基以相应的名称;
第四,使用一些代表结合情况的化学介词,然后把母体名称作为主体后,用介词连缀上取代基和官能团的名称,并按位次编排法注出取代基和官能团的位次给出各有机化合物名称。
【同分异构现象】化合物具有相同的分子式但结构不同的现象,叫同分异构现象。具有同分异构现象的化合物互为同分异构体。在烷烃分子里,随着碳原子数目的增加,碳原子之间的结合方式也就越多样化,同分异构体的数目也就越多。如丁烷有两种同分异构体,己烷有5种同分异构体,庚烷有9种,癸烷有75种之多。在有机化学中,常见的同分异构现象有:
1.碳链异构 碳原子在分子中的排列不同,如丁烷和异丁烷
2.位置异构 官能团在碳链中的位置不同,如丙醇和异丙醇
3.官能团异构 如:
4.立体异构 具有相同分子式的化合物中,由于原子或原子团在空间排列不同而引起的同分异构现象。有几何异构(也称顺反异构)和旋光异构(从略)。由于双键或环的存在,某些原子或原子团在空间的排列不同而产生几何异构。如:2—丁烯
【定义】组成相同而分子中碳原子相互连接的顺序不同的化合物,叫做碳链异构体。这一现象叫做碳链异构现象。
【说明】碳架异构只涉及分子中碳原子的结合顺序不同,不涉及分子中各原子在空间的排列和定向,所以在书写各种碳架异构体的构型时只要求能表明碳原子的结合顺序。例如,C5Hl2的三种碳链异构可写成正戊烷、异戊烷、新戊烷。
![]() |
戊烷 |
【定义】组成相同而分子中的取代基或官能团(包括碳碳双键和三键)在碳架(碳链或碳环)上的位置不同,这些化合物叫位置异构体。这一现象叫做位置异构现象。
【说明】位置异构只涉及取代基或官能团的位置,通常是针对碳架结构相同的化合物来讲的。在推导某有机物的异构体时,可先推导出碳架异构体,然后根据各种碳架异构体分别推导可能有的位置异构体。
【定义】组成相同而分子中的各种原子结合方式或顺序不同, 因此有不同的官能团,这些化合物叫类别异构(叫官能团异构)。 这一现象叫做类别异构现象。
【说明】
1.类别异构涉及分子中碳原子的结合方式(单键、双键或三键)、碳架的基本结构(成链或成环)以及其他原子在碳链中或碳链 上的位置。这类异构如1, 3-丁二烯和1-丁炔,环丁烷和1-丁烯, 乙醇和甲醚,丙酮和丙醛。
2.类别异构跟碳架异构、位置异构有很大的不同,类别异构体之间在化学性质上往往有本质上的差别。例如,组成相同的醇和醚属于类别异构,它们是化学性质完全不同的两类物质。
【定义】在单键和双键相互交替的共轭体系或其他共轭体系中,由于π电子的离域作用使分子更稳定、内能降低、键长趋于平均化,这种效应叫做共轭效应。
【说明 】
1. 诱导效应和共轭效应都能使体系的电荷分散、能量降低、 稳定性增加。但是两者的区别是诱导效应主要通过σ键传递,而且传递二三个原子后就迅速减弱到可以忽略不计。共轭效应主要i通过π键传递,能从共轭体系的一端传递到较远的一端。
2. 共轭效应分静态共辄效应和动态共扼效应。静态共轭效应是在没有外界的影响下表现的一种内在性质。例如,苯分子中各碳原子共平面,相邻π键交叠而成共轭,使6个碳碳键的键长平均化,使体系趋于稳定。动态共轭效应是在外界条件(如试剂)影响下使分子中的电子云密度重新分配,分子的极性增大。例如: 1,3-丁二烯跟卤化氢反应时,由于动态共轭效应使加成反应主要发生1,4-加成。
3. 如果共轭体系中的取代基能降低体系的电子云密度,则这些基团有吸电子共轭效应,如-NO2、—CN、一COOH、一CHO、一COR 等。如果取代基能增加共轭体系的电子云密度,则这些基团有给电子的共轭效应。这类取代基如—NH2、—Cl、-OH。
【定义】苯环上原有取代基对新引入取代基位置的影响,叫做定位效应。
【说明】
1.苯环上新引人的取代基所占的位置决定于原有取代基的性质,按它们的定位效应分成两类:
第一类叫邻、对位定位基。这类取代基在苯环上能使新引入的取代基主要定位于它的邻、对位(邻+对>60%)。除卤原子外, 其他基团都能使苯环活化,使取代反应容易发生。这些基团的结构特点是跟苯环连接的原子一般只有单键,多数具有未共用的电子对。属这类取代基的有(按定位效能从强到弱排列):一O- (氧负离子)、一N(CH3)2 (二甲胺基)、一NH2 (氨基)、一OH (羟基)、—OCH3(甲氧基)、—NHCOCH3 (乙酰胺基)、一CH3 (甲 基)、—OCOCH3 (乙酰氧基)、一Cl (氯)、一Br (溴)、一I(碘)、 —C6H5(苯基)等。
第二类叫间位定位基。这类取代基在苯环上能使新引人的取代基主要定位在它的间位,而且都会使苯环钝化。这些基团的结构特点是跟苯环连接的原子一般都有不饱和键(双键或三键)或正电荷。属于这类取代基的有(按定位效能从强到弱排列): 一N+(CH3)3 (三甲胺基正离子)、一N02(硝基)、一CN (氰基)、 —S03H (磺基)、一CHO (醛基)、一COCH3 (乙酰基)、一COOH (羧基)、—COOCH3 (甲氧羰基)、一CONH2 (氨基甲酰基)、 一N+H3(胺基正离子)等。
2. 除取代基的定位效应(起决定作用的)外,温度、溶剂、催化剂等反应条件以及苯环原有取代基的体积大小等因素,对反应生成各种异构体的比也有影响,但一般不会改变苯环上原有取代基的定位效应。
3. 当苯环上已有两个取代基时,第三个取代基引人的位置, 一般可根据原有两个取代基的性质来判断。当两个取代基的定位效应一致时,仍由上述的定位规则来决定。 当原有两个取代基的定位效应不一致时,如果取代基属于同一类,则第三个取代基引入的位置主要决定于定位作用强的取代基。如果两个取代基分属两类,则第三个取代基引入的位置,一般 由邻、对位定位基起主要作用,因为邻、对位定位基(除卤原子外) 能使苯环活化。
【定义】烃分子中去掉一个或几个氢原子后剩余的原子团,叫做烃基。
【说明】烃基通常用R表示。烃基可分为一价基、二价基和三价基。
例如,一价基:CH3CH2—(乙基)、(CH3)2CH—(异丙基)、CH≡C—CH2— (2-丙炔基);
二价基:CH3CH-(亚乙基)、一CH=CH—(1, 2-亚乙烯基)。三价基:CH3C≡(次乙基)
烷烃分子中去掉一个氢原子后剩下的一价烃基叫烷基,通式是 CnH2n+l。
【定义】硝酸分子(H0—N02)中去掉一个羟基(一0H)后剩余的一价原子团(一NO2),叫做硝基。
【说明】
1. 硝基是硝酸的酰基,因此硝基又叫硝酰基。
2. 硝基是硝基化合物的官能团。硝基是发色团,能加深有机物(染料等)的颜色。有些药物分子中引入硝基能增强抗菌性。分子中引入多个硝基会使它的氧化性增强,成为强爆炸性的物质(如 TNT、苦味酸)。
【定义】硫酸分子(H0—S02—OH)中去掉一个羟基后剩余的一价原子团(一S02—0H或一S03H),叫做磺基。
【说明】
1. 磺基是硫酸的酰基,因此磺基又叫做磺酰基。
2. 磺基跟烃基的碳原子直接相连形成磺酸(R—S03H)。磺酸是很强的有机酸,它的酸性同一般无机酸相似。有机物分子中引入磺基后会增强它的酸性和水溶性,因此多数合成染料含有磺基。
【定义】氨分子(NH3)中去掉一个氢原子后剩余的一价原子团 (一NH2)叫做氨基。
【说明】
1. 伯胺(R—NH2)、氨基酸、酰胺(R-CO-NH2)等有机物分子都含有氨基。引人氨基,会增加化合物的碱性。
2.氨分子中去掉两个和三个氢原子后剩余的两价原子团
(一NH一)和二价原子团(-N一)分别叫亚氨基和次氨基。仲胺 (R2NH)和叔胺(R3N)分子中分别含有这两种基团。
【定义】自由基参与的反应叫自由基反应。
【说明】
1. 自由基是在光照、辐射、过氧化物或高温作用下,由分子中原子间的共价键的均裂产生的,有不成对价电子的原子或原子团, 叫做自由基(曾用名:游离基),例如H• (氢自由基)、Cl•(氯自由基)、•CH3(甲基自由基)。
2. 自由基反应具有链反应的特点,反应历程经链引发(产生活性中间体——自由基)、链增长(自由基向反应物进攻,生成新的自由基)和链的终止(自由基老化丧失活性)三个阶段。例如,
链引发:
Cl•┆•Cl → •Cl+ •Cl
链增长:
Cl•+H•┆•CH3 → •CH3+ HCl
•CH3+Cl••Cl→CH3Cl+ •Cl
链终止:
Cl• + •Cl→Cl2
•CH3+•CH3→CH3-CH3
•CH3+ • Cl → CH3Cl
自由基反应是通过共价键的均裂进行的,酸、碱的存在或溶剂极性的改变对自由基反应的影响很小,但非极性溶剂有利于自由基反应。
3. 自由基反应主要有两大类。一类是自由基取代反应,如烷烃的氯代反应。另一类是自由基加成反应,如氯跟四氯乙烯的加成反应。
【定义】由缺电子试剂(亲电试剂)进攻反应物电子云密度较大的部位而引起的反应,叫做亲电反应。例如,
【定义】带有未共甩电子对的负离子或中性分子(亲核试剂)进攻反应物中带有正电荷(或部分正电荷)的碳原子,由此引起的反应叫做亲核反应。例如,
【定义】在有机物分子中的碳原子上引入卤素原子,这种反应叫卤化。
【说明】
1. 按引入卤素的不同,可分为氟化、氯化、溴化、碘化。工业上氯化反应用得最多,碘化反应一般很难发生,氟化反应很难控制。通常通过间接的方法把氟原子引入有机物中。
2. 通常用取代反应(如饱烃、芳香烃跟X2的取代反应)和加成反应(如不饱和烃跟X2、HX的加成反应)使有机物卤化。
【定义】在有机物分子中的碳原子上引人硝基(一NO2)的反应 叫硝化。
【说明】
1.芳香族化合物通常用浓硝酸或混酸(浓硝酸和浓硫酸的混合物)作硝化剂硝化(亲电取代反应)。在没有硫酸存在下,硝酸按下式离解,N02+(硝酰正离子)是有效的硝化剂(亲电试剂):
2HN03 → N02+ +H20 + N03-
当硫酸存在时,能生成更多的NO2+ ,更容易发生硝化反应。
【定义】在有机物分子中引入磺基(一SO3H)的反应叫磺化。
【说明】
1. 脂肪族化合物通常用间接的方法磺化。
2. 芳香族化合物主要用直接磺化(亲电取代反应)。常用的磺化剂有浓硫酸、发烟硫酸等。磺化反应一般按下列历程进行。
【定义】有机物在适当条件下,从分子中相邻的两个碳原子上去掉H20、HX、H2、NH3等小分子而生成不饱和(双键或三键)化合物的反应叫消除反应(曾用名:消除反应)。
【说明】消除反应主要有卤代烃脱商化氢和醇分子内脱水反应。
例如
卤代烃在脱去HX时,氢原子主要从卤原子相邻含氢较少的碳原子上脱去。醇分子内脱水时,氢原子主要从羟基相邻常氢较少的碳原子上脱去。例如,
【定义】由分子量较小的化合物(单体)而结合成分子量较大的化合物,这种反应叫聚合反应。
【说明】根据分子的元素组成和结构形式的变化分为两类。
1.加聚反应由一种或多种单体相互加成而生成高分子化合物,这种反应叫加聚反应。一种单体发生的加聚反应叫做均聚反应。由两种或两种以上单体发生的加聚反应叫共聚合反应。
2.缩聚反应有两个或两个以上官能团的单体相互缩合,生 成高分子化合物,同时生成小分子(如水、卤化氢、氨和醇等),这种反应叫缩聚反应。
【定义】分子中的碳原子间全部以单键连接,碳原子余下的价键被氢原子饱和的碳氢化合物,叫做饱和烃。
【说明】
1. 根据碳架结构,饱和烃分开链的烷烃(也称石蜡烃)和闭链 的环烷烃。它们的通式分别是CnH2n+2和CnH2n。
2. 烷烃命名的基本原则:(1)选择最长的碳链为主链,根据 主链上的碳原子数写出主链为某烷,支链当作取代基。(2)从靠近 取代基的一端给主链上碳原子依次编号,把取代基的位次和名称写在母体名称前面。(3)同一碳原子上有两个相同的取代基,取代 基的位次号应重复写两次;不同碳原子上有相同的取代基应分别写出它们的位次。书写时把简单的取代基写在前,复杂取代基写在后。(4)取代基的应次用阿拉伯数字表示,取代基的数目用汉字二、三、四等数字表示。、阿拉伯数字间用“,”号分开,阿拉伯数字和汉字之间或和基团名称之间用短线分开。(5)有两种以上选 择主链的可能性时,应选择含支链数较多的碳连为主链。如果支链数目也相同,应选择支链位次总和最小的碳链为主链。
3. 环上带有支链的环烷烃命名时,龜号从环上连有支链的碳 原子开始。如果有两个或两个以上的支链,常使较小的支链位次较小。如果支链所含的碳原子数超过环上的碳原子数,或同一碳 链上连有几个环时,就以碳链作母体,环作取代基来命名。
4. 由于C一C键和C—H键的键能较大,C—H键的极性较小,所以饱和烃的性质比较稳定,通常条件下很难跟强酸、强碱和强氧化剂反应。但在适当条件下会发生氧化、燃烧、取代、异构化 和裂解等反应。小环的环烷烃(如环丙烷、环丁烷)的环不稳定,环 易破裂,在适当条件下能跟H2、X2、HX等发生加成反应,生成相应的开链有机物。
【定义】烃分子中的一个或多个氢原子被卤原子取代,生成的化合物叫做卤代烃。
【说明】
1. 卤代烃简称卤烃。氟代烃虽然属于卤代烃,但是它的制法和性质比较特殊,一般把它分开讨论。通常所说的卤代烃指氯代烃、溴代烃和碘代烃。根据烃基的不同,卤代烃分脂肪族卤代烃和 芳香族卤代烃。根据分子中所含的卤素原子数又把它们分成一卤 代烃、二卤代烃、三卤代烃等。含有两个或两个以上卤原子的卤代 烃统称多卤代烃。
2. 卤代烃命名时以烃为母体,卤素作取代基,再按烃的卤化物命名。如果分子里有双键等官能团,这些官能团的位次先于卤素。不太复杂的卤代烃也常用根基官能团命名法,就是在有机基团名称后加上相应卤化物的词尾来命名。例如,CH3Br和CH2=CHC1分别命名为甲基溴和乙烯基氯
3. 卤代烃分子中的C-X键是极性键,其中的卤原子很活泼,容易被其他原子或原子团取代。不同卤代烃发生化学反应的相对速度,除了决定于X原子的种类(活泼性顺序是RI>RBr>RCl)外,还决定于C—X键中跟碳原子结合的基团。卤代烃还能发生消去反应。