【定义】由两种或两种以上的简单盐类组成的同晶型化合物,叫做复盐。
【说明】
1.复盐又叫重盐。复盐中含有大小相近、适合相同晶格的一些离子。例如,明矾(硫酸铝钾)是KAl(S04)2·12H20,莫尔盐(硫酸亚铁铵)是(NH4)2Fe(S04)2·6H20,铁钾矾(硫酸铁钾)是KFe(S04)2·12H20。
2.复盐溶于水时,电离出的离子,跟组成它的简单盐电离出的离子相同。例如,KAl(S04)2=K++A13++2SO42-
3.使两种简单盐的混合饱和溶液结晶,可以制得复盐。例如,使CuS04和(NH4)2S04的溶液混合结晶,能制得硫酸铜铵[(NH4)2S04 ·CuS04 ·6H20]。
4.由两种不同的金属离子和一种酸根离子组成的盐。例如硫酸铝钾[KAl(SO4)2],十二水合硫酸铝钾[KAl(SO4)2·12H2O]俗称明矾。明矾也可用化学式K2SO4·Al2(SO4)3·24H2O表示,是无色晶体,溶于水完全电离产生三种离子,Al3+水解形成Al(OH)3胶体,水溶液呈酸性。
Al(OH)3有很强的吸附能力,它吸附水中悬浮的杂质形成沉淀。因此,明矾可作净水剂,还可作收敛剂和媒染剂。
5.氯化镁钾[KMgCl3]也是复盐。自然界的KCl·MgCl2·6H2O,俗称光卤石,易溶于水。从光卤石可提取KCl和MgCl2。复盐和复盐的水合物都属于纯净物。
【结晶水合物】含有结晶水的固体物质,叫做结晶水合物。
说明
1.结晶水合物中的水分子是以确定量存在的,如FeCl3·6 H20、 FeS04·7 H2O、 Ba (OH) 2 · 8 H2O和ZnS04 ·7 H2O 等。因此,结晶水合物是纯净物。
2.水合物中的水分子有各种结合方式。一种是作为配位体,配位在金属离子上,叫配位结晶水。另一种结合在阴离子上,叫阴离子结晶水。例如,CuS04·5 H20加热到113℃,只失去4分子,加热到258℃才能脱去最后1分子水。由此推断,它的结构是[Cu(H2O)4]2+[S04(H20)]2-3.含有结晶水的物质叫做结晶水合物。又称水合物、水化物。如绿矾(FeSO4·7H2O)、二水合硫酸(H2SO4·2H2O)、六水合氯化铁(FeCl3·6H2O)等。除水合离子外,结晶水合物大多是晶态物质。结晶水合物在受热时会失去结晶水,并有显著的吸热效应。
【定义】主要以共价键结合形成的化合物,叫做共价化合物。
【说明】
1.不同种非金属元素的原子结合形成的化合物(如CO2、ClO2、B2H6、BF3、NCl3等)和大多数有机化合物,都属于共价化合物。在共价化合物中,一般有独立的分子(有名符其实的分子式)。通常共价化合物的熔点、沸点较低,难溶于水,熔融状态下不导电,硬度较小。
2.有些离子型化合物中也可能存在共价键结合。例如NaOH分子中既有离子键又有共价键。有些共价化合物中局部区域也可能包含离子键的成分,例如苯酚钠等。
3.以共价键结合的有限分子(即共价化合物分子),且靠分分子间范德华力作用而凝聚成的晶体,是典型的分子晶体,如CO2晶体、苯的晶体等。以共价键结合的无限分子形成的晶体属于共价型晶体或原子晶体,它是由处于阵点位置的原子通过共价键结合而成的晶体,如金刚石晶体、单晶硅和白硅石(SiO2)晶体。【定义】阳、阴离子之间通过离子键结合而形成的化合物为离子化合物。
【说明】
1. 离子化合物的形成可以用电子式表示:如氯化铵形成的电子式为:
2.离子化合物在室温下以离子晶体形式存在,不存在单个的离子化合物分子。NaCl、MgO、CaF2等实际上只是表示离子晶体中阳、阴离子个数的简单整数比和重量组成比的化学式,不是分子式。只有在气态时才有离子型分子。
3.离子化合物的熔点,与离子所带电荷、离子半径和离子的核外电子排布等结构特征有关。一般说来,阳、阴离子所带的电荷越多、离子半径越小,离子化合物的熔点越高。如果离子化合物的其他特征相同,则阳、阴离子的核间距越大,它们的熔点越低。
4.大多数离子化合物易溶于水,难溶于有机溶剂。离子化合物在水溶液中和在熔融状态下都有能自由移动的离子,因此能导电。
【定义】含有过氧基(一O一O一)的化合物叫做过氧化物。
【说明】
1.过氧化物中氧的氧化数是-l。过氧化物包括过氧化氢(H202)、金属过氧化物、过氧酸盐和有机过氧化物。过氧化物可以看作是过氧化氢的衍生物。
2.金属过氧化物只是碱金属和碱土金属中存在过氧化物,例如Na202、Ba02等。常见的过氧酸有过二硫酸及其盐、过二磷酸等。有机过氧化物有过氧乙酸、过氧化苯甲酰等。
3.过氧化物都是强氧化剂,加热时放出氧气,跟稀酸反应能生成过氧化氢。
Ba02+H2S04=H202+BaS04
【定义】氢跟其它元素组成的二元化合物。例如氢化钠、硫化氢、硼烷等。
【说明】
按其结构大致可分成三种类型:
1. 离子型氢化物(又叫盐型氢化物)碱金属和碱土金属中 的钙、锶、钡能跟氢气在高温下反应、,生成离子型氢化物,如NaH、 CaH2等,其中氢以H-离子形式存在。这类氢化物都是离子晶体,熔点较高,在熔融状态下能导电。它们都有强还原性,遇水分解,生成金属氢氧化物,并放出氢气。
2. 共价型氢化物(又叫分子型氢化物)氯化氢、氨、硫化氢、 甲烷等在常温下呈气态或液态,水在常温下呈液态。这类氢化物 性质差异较大,如HX、H2S溶于水时电离而显酸性,NH3溶于水 显碱性,CH4水不发生任何作用,SiH4发生反应:SiH4 + 4H20= H4Si04 + 4H2。
3. 金属型氢化物 铍、镁、铟、钛和d区、f区金属元素的单质都能跟氢生成金属氢化物,如BeH2、MgH2、FeH2、CuH等,还 有非整数比化合物,如VH0.56、ZrH1.92、PdH0.8等。金属型氢化 物保留金属的外观特征,有金属光泽,密度比相应金属小。据最新研究,金属型氢化物在有机合成及作储氢材料方面有重要用途。 例如,1体积钯可吸收700~900体积的氢气成为金属氢化物,加热后又释放出氢气。
【定义】由非金属元素组成的单质。非金属一般没有金属光泽,不是电和热的良导体,没有延性和展性。在通常情况下,非金属有的是固体,有的是气 体,只有溴是液体。非金属固体大多数是分子晶体,硬变小,熔点、沸点较低,但有的非金属固体属原子晶体,如金刚石、晶体硅等,它们的硬度大,熔点、沸点较 高。非金属元素的原子价电子较多,原子半径较小,在化学反应中倾向于得到电子。大多数非金属既具有氧化性,又具有还原性。金属与非金属没有严格界限,位于 周期表P区左上到右下对角线附近的元素,如硼、硅、锗、砷、锑、碲等既具有非金属的性质,又具有金属的性质,可把这些元素的单质称为准金属或半金属。
【说明】
1.非金属正好跟金属相反,一般无金属光泽,缺乏延展性,是电和热的不良导体。在通常状况下,非金属有的是固体,有的是气,只有溴是液体。非金属固体中金
刚石、晶体硅、晶体硼是原子晶体,熔点和沸点都很高:硬度也大。其他非金属固体属于分子晶体,熔点、沸点较低,硬度小。
2.非金属元素原子的价电子较多,在化学反应中倾向于得到电子,具有氧化性,容易跟金属化合。非金属元素之间相结合时,其中非金属性较弱的元素会部分失去电子,显示还原性,大多数非金属能跟氧结合成酸性氧化物。
3.非金属与金属之间没有严格的界限。例如硼、硅、锗、砷、锑、硒、碲等既有金属的性质,又有非金属的性质,有时把它们叫做半金属(也有叫做准金属)。
【定义】由金属元素组成的单质。具有金属光泽、不透明、有延性和展性、有良好的传热性和导电性的一类物质。在金属晶体中有中性原子、阳离子和自由电子,金 属具有上述性质,都与晶体中存在自由电子有关。常温下除汞外,都以固态形式存在。化学性质一般表现较强的还原性,由于金属元素原子的价电子较少,原子半径 较大,在反应中容易失去价电子成为阳离子的缘故。工业上通常把金属分为黑色金属和有色金属两大类。有色金属又可分成轻金属、重金属、贵金属和稀有金属等。
【分类】
1、黑色金属:通常是指铁、铬、锰和铁的合金(主要指钢铁)。在各种金属中,铁在地壳中分布较集中,储量较丰富,开采和冶炼较多,价格也较廉。铸铁和钢的品种和 规格很多,它们是工业上最广泛应用的金属材料,在国民经济中占有极重要的地位。铬与锰主要应用于制合金钢。铁、铬、锰及其合金都不是黑色的,而钢铁表面经 常覆盖着一层黑色的四氧化三铁。这样分类,主要是从钢铁在国民经济中的重要地位出发的。
2、有色金属:通常是指除铁、铬、锰和铁的合金以外的其它金属。可分为四类:(1)重金属,如铜、锌、铅、镍等。(2)轻金属,如钠、钙、镁、铝等。(3)贵金属,如金、银、铂、铱等。(4)稀有金属,如锗、铍、镧、铀等。
a、重金属:一般是指密度在4.5克/厘米3以上的金属。例如铜、锌、钴、镍、钨、钼、锑、铋、铅、锡、汞等,过渡元素大都属于重金属。也有把密度在5克/厘米3以上的金属称为重金属的。
b、轻金属:一般是指密度在4.5克/厘米3以下的金属。例如钠、钾、镁、钙、铝等。周期系中第一、二主族均为轻金属。也有把密度在5克/厘米3以下的金属称为轻金属的。
c、贵金属:通常是指金、银和铂族金属(包括钌、铑、钯、锇、铱、铂)。这些金属在地壳中含量较少,不易开采,价格较贵,所以叫贵金属。这些金属对氧和其它试剂较稳定,金和银常用来制造装饰品和硬币。
d、稀有金属:通常是指自然界中含量较少,比较分散的金属。它们难于从原料中提取,在工业上制备及应用较晚。稀有金属和普通金属没有严格界限,某些稀有金属比
铜、汞、镉等金属还多。稀有金属在现代工业中具有重要的意义,往往把黑色金属、有色金属和稀有金属并列为三大类。稀有金属根据其在地壳中的分布状况及冶炼
方法,可分为六类:(1)稀有轻金属,如锂、铷、铯、铍、钛等。(2)稀有难熔金属,如钨、钼、铌、钽、铪、钒等。(3)稀有分散金属(或称稀散金属),
如镓、铟、铊、锗等。(4)稀土金属,包括钪、钇和镧系元素。(5)稀有贵金属,指铂族元素。(6)稀有放射性金属:包括钋、钫、镭、锕、钍、镤、铀以及
从1940年以来陆续发现的十多种人造放射性元素。
【说明】
1.金属具有特殊的金属光泽(对可见光强烈反射)、富有延性和展性,是电和热的良导体等性质。
2.金属的上述特性都跟金属晶体里含有自由电子有关。在金属晶体中有中性原子、金属阳离子和自由电子。自由电子能在整个晶体中自由移动。
①当光线照射到金属表面时,自由电子吸收所有频率的可见光,然后很快发射出大部分所有频率的可见光,这就使绝大多数金属显出银白色或钢灰色的光泽。金属在
粉末状态时,晶体排列不规则,可见光吸收后难以发射出去,所以金属粉末一般呈暗灰色或黑色。少数金属如金、铝等,它们的粉末仍保持原有的颜色和光泽。
②自由电子在金属晶体里作不规则的运动,在外电场的作用下,自由电子会作定向移动,形成电流,这就是金属容易导电的原因。
⑧当金属的一部分受热时,受热部分的自由电子的能量增加,运动加剧,不断跟金属离子碰撞而交换能量,把热量从一部分传向整块金属,因而金属有良好的导热性。
④当金属受到外力作用时,金属晶体内某一层金属原子、离子跟另一层金属原子、离子发生相对滑动,由于自由电子的运动,各层间仍保持着金属键的作用力,所以金属具有良好的延展性。只有少数金属,如锑、铋、锰性质比较脆。
3.金属在通常状况下,除汞是液体外,其余都是固体。导电、导热性最好的是银,延性铂最突出,展性金最优越,密度最大的是锇(在25℃是22. 57 g/cm3),硬度铬最高,熔点最高的是钨(3410℃)。
4.金属元素原子的价电子较少,在化学反应中容易失去电子,所以金属一般表现还原性。
5.工业上常常把金属分为黑色金属和有色金属两大类。有又可分为轻金属、重金属、贵金属、稀有金属和半金属等类别。
6.金属除铜、金、铂和铋等以游离态存在外,极大多数以化合态存在于自然界中。金属的矿物通常以氧化物或硫化物的形式存在,较少的氯化物、硫酸盐、碳酸
盐、硅酸盐等形式存在于自然界。业上常在高温下用碳、一氧化碳或氢气还原、电解水溶液或熔融盐、用活泼金属(如Al、Ca、Mg、Na)热还原等方法提炼金属。
【混和物】由几种不同的单质或化合物通过机械混和而成的物质。混和物没有固定的组成,混和物中各成分仍保持各自原有的性质,可以利用混和物中所含各成分的不同物理性质进行分离,例如空气中所含的氮气、氧气、惰性气体等可利用它们的沸点不同而分离开来。
说明
1.混合物跟化合物不一样,它没有固定的组成。混合物中各组分仍保持各自原有的性质。
2.混合物中各组分之间可以均匀地分散(如溶液)或非均匀地分散(如浊液或固体混合物),但互相不发生化学反应。由于不同组分之间相互吸引或排斥,可能影响混合物的整体特性。例如,由几种液体形成的混合物,总体积一般不等各种液体分体积的和。
3.混合物能根据它所含各组分的物理性质(如溶解度、沸点、密度、磁性等)的不同,用物理方法(如结晶、升华、蒸馏、萃取等操作)加以分离。
4.我国中学化学教材中长期把混合物写成混和物,把混合写成混和,现在已经改正。
【定义】由不同种元素组成的纯净物。化合物具有固定的组成并具有一定的性质。化合物从成分上可分为有机物和无机物两大类,从构成化合物的化学键又可分为离子化合物和共价化合物两大类。
【说明】【定义】由同种元素组成的纯净物。单质不可能再分解成两种或两种以上的不同物质。例如氧气(O2)、磷(P4)、铁(Fe)、银(Ag)等。单质和元素是两个不同的概念,元素是具有相同核电荷数的同一类原子的总称,元素以游离态存在时为单质,有些元素可以形成多种单质,例如碳元素可以形成金刚 石、石墨和无定形碳等多种单质。根据单质的不同性质,一般单质可分为金属和非金属两大类。
【定义】由一种单质或一种化合物组成的物质。
纯净物具有固定的组成、结构和性质,例如纯净的水无色透明、无味。密度是1克/毫升,熔点0℃, 沸点100℃。自然界里纯净物极少,根据生产和科学实验的要求,可按物质不同性质进行提纯。实际上绝对纯的物质是不存在的,凡含杂质的量不至于在生产和科 学实验过程中发生有害影响的物质,就当作纯净物,如作半导体材料的高纯硅,其纯度为99.999999999%,也不是完全纯净的。因此,纯净物一般是指 含杂质很少具有一定纯度的物质。
【说明】
1.纯净物都有固定的组成,可以用一定的化学式表示。纯净物不能用物理方法而只能用化学方法把各组成元素分开。
2.实际上完全纯的物质是没有的。一种物质,它所含杂质的量不至于在生产和科研中发生有害影响,这种物质可以看作纯净物。一般说的纯净物,它们的纯度有差
别。例如,化学试剂按纯度由低到高可分为工业纯、实验纯(L.R)、化学纯(C.P)、分析纯(A.R)、优级纯(G.R)和超纯等多种规格。
3.在实验中选用试剂的纯度等级过高,会因价格过高而造成不必要的浪费;选用试剂纯度等级过低,会因试剂中的杂质干扰而造成实验失败。应该根据用途不同,选用纯度相当的试剂或原料。
许多物质从水溶液中形成晶体析出时,晶体里常结合一定数目的水分子。这样的水分子叫做结晶水。如胆矾(CuSO4·5H2O)中就含有结晶水。
【定义】 一般指中心原子获得电子显示氧化性的酸。如浓硫酸、硝酸、氯酸、高氯酸、高锰酸、重铬酸等,其中心原子在氧化-还原反应中容易获得电子而显示氧化性,可用作氧化剂。任何酸的水溶液中都不同程度地电离出H+ ,H+ 在一定条件下可获得电子而形成H2,这也是酸的氧化性的表现,实质上是H+ 的一种性质。应该与酸的中心原子获得电子所呈现的氧化性区别开来。通常把盐酸、稀硫酸等称作为非氧化性酸。
【定义】在氧化-还原反应中失去电子(或电子对偏离)的反应物。在反应中还原剂中元素的化合价(或氧化数)升高。还原剂能还原其它物质而自身在反应中被氧化。
【说明】
1、还原剂能还原其他物质而自身被氧化。它失去电子后,自身的化合价(或氧化数)升高。
2、还原剂通常是指容易失去电子的物质,常见的有:
(1)活泼金属,如钠、钾、镁、铝、铁等。
(2)具有低化合价(氧化数)的金属离子,如Fe2+、Sn2+等。
(3)非金属离子,如I-、S2-等。
(4)含有低化合价(氧化数)元素的含氧化合物,如CO、SO2、Na2SO3、Na2S2O3、NaNO2等。
3、根据还原剂失去电子的难易程度,可分为弱还原剂和强还原剂,定量地判断还原剂还原能力的大小,应根据该还原剂及其氧化产物所组成的氧化还原电对的标准电极电位E0值来确定,E0值越负,表明该还原剂的还原能力越强。

【定义】 盐是指一类金属离子或铵根离子与酸根离子或非金属离子结合的化合物。如NaCl、(NH4)2SO4、Cu2(OH)2CO3、KHCO3等。在常温时,盐一般为晶体。它们在水中的溶解性各不相同,钾盐、钠盐、硝酸盐和铵盐很容易溶解;有些盐很难溶解,如AgCl和BaSO4等。铵盐和碳酸盐、硝酸盐、亚硝酸盐、重铬酸盐、高锰酸盐等含氧酸的盐稳定性较差,受热时可以分解。大多数盐是强电解质,其水溶液或熔液能够导电。但有些盐(如HgCl2)的水溶液几乎不导电,它在水溶液中主要以分子状态存在。根据组成的不同,盐可以分为无氧酸盐、含氧酸盐、正盐、酸式盐、碱式盐、复盐、络盐等。
【说明】
1.根据组成不同,盐可以分成正盐、酸式盐、碱式盐、复盐和 络盐等。既不含可以电离的氢原子,又不含氢氧根,这种盐叫正 盐。由金属离子和含有可以电离的氢原子的酸根所组成的盐,叫 做酸式盐,如NaHC03和NaH2P04。它们分别叫碳酸氢钠和磷 酸二氢钠。除金属离子和酸根以外,还含有一个或几个氢氧根, 这种盐叫碱式盐,如:Cu2(OH)2C03、Mg(OH)Cl、(BiO)Cl 和 (BiO)2C03。它们分别叫做碱式碳酸铜、碱式氯化镁、碱式氯化 铋(或氯化氧铋)和碱式碳酸铋(或碳酸氧化铋)。上述后面的f种 物质是碱式盐失水后的产物,如Bi(OH)2Cl失水后成(BiO)Cl。
2.在常温下,盐一般是晶体。大多数盐能溶于水,如钾盐、钠 盐、铵盐、硝酸盐等。
3.有些盐受热时容易分解,如铵盐、碳酸盐、硝酸盐、重铬酸 盐和高锰酸盐。但是盐都比相应的酸稳定,例如,就稳定性说, Na2C03>NaHC03>H2C03
4.大多数盐是电解质,它们的水溶液或在熔融状态下能够导 电。有些盐(如HgCl2)由于发生离子极化作用,键性从离子键转向共价键,它们的水溶液不导电。
【苛性碱】碱金属氢氧化物的总称。一般指的是苛性钠(NaOH)和苛性钾(KOH)。由于它们对皮肤、羊毛、纸张、木材等具有强烈的腐蚀性而得名。
【碱】电解质电离时所生成的阴离子全部是氢氧根离子(OH-)的化合物。例如NaOH、Ca(OH)2、NH3·H2O等。能跟酸性氧化物或酸反应生成盐和水,碱的水溶液有涩味,可使紫色石蕊试液变蓝。根据碱的电离程度,可以分为强碱(如NaOH、Ca(OH)2)和弱碱(如NH3·H2O)。根据碱电离时产生的氢氧根离子的数目可分为一元碱(如NaOH)、二元碱(如Ca(OH)2)、多元碱(如Fe(OH)3)等。此外,根据酸碱的质子理论和电子理论,还有质子碱和路易斯碱,因而使得“碱”这个概念包括的范围极为广泛,而且又赋予它新的含义。
【说明】
1.根据碱在水溶液中的电离程度,碱分成强碱和弱碱。能全 部电离的是强碱,包括碱金属和钙、锶、钡的氢氧化物;只能部分电离的是弱碱,其他的氢氧化物都是弱碱。
H+ +B(碱)
H+ +NH3
H+ +CO32-
H+ +HCO3-【过氧酸】简称过酸。分子中含有过氧基(-O—O-)的酸。例如过硫酸H2SO5和过二硫酸H2S2O8等。过氧酸可以看成是H2O2中的氢原子被酸根取代的产物。

【酸】电解质电离时所生成的阳离子全部是氢离子(H+)的化合物。它能和碱或碱性氧化物反应生成盐和水,能与某些金属反应生成盐和氢气,水溶液有酸味并能使指示剂变色,如紫色石蕊变红。根据酸分子中可被金属原子置换的氢原子数目,可分为一元酸(如HCl)、二元酸(如H2SO4)、多元酸(如H3PO4)等。根据酸在水溶液中产生氢离子程度的大小(即电离度的大小),可分为强酸(如HCl、H2SO4、HNO3、HClO4等)和弱酸(如H2CO3、H2S等)。根据酸根的组成成分又可分为含氧酸(如H2SO4)和无氧酸(如HCl)。此外,根据酸碱的质子理论和电子理论,还有质子酸和路易斯酸等,因而使得“酸”这个概念包括的范围极为广泛,而且又赋予它新的含义。
【说明】
1. H30+(水合氢离子)是H+和H20结合而成的。在书写电离方程式时,为了简便起见,通常仍以H+代替H30+ 。
2. 根据酸在水溶液中电离度的大小,酸分为强酸和弱酸。根据酸分子中可以电离的氢原子个数,酸分为一元酸(如HNO3)、 二元酸(如H2S04)和三元酸(如H3P04)。根据酸中是否含氧,酸分为含氧酸和无氧酸。
3. 无氧酸称氢某酸。如HF叫氢氟酸,H2S叫氢硫酸。在无氧酸中,HC1、HBr和HI是强酸,其余都是弱酸。简单含氧酸 通常叫某酸,如硫酸(H2S04)、碳酸(H2CO3)。某一成酸元素如果能形成多种含氧酸,就按成酸元素的氧化数高低命名,如高氯酸 (HClO4、氯酸(HC103)、亚氯酸(HC102)、次氯酸(HClO)。两个简单含氧酸缩去一分子水而形成的酸,叫做焦酸(或称一缩某酸、重酸),例如,2H2S04 = H2S207(焦硫酸)+H20;2H2Cr04=H2Cr207(重铬酸)+H2O
酸分子中的氢氧塞数等于成酸元素的氧化数,这种酸叫原某酸,如 原磷酸[P(OH)5 即 H5PO5],原硅酸[Si(OH)4,即 H4Si04]。一个正酸分子失去一分子水而形成的酸,叫做偏某酸,如偏磷酸 (HP03)、偏硅酸(H2Si03)。含有过氧键(一0—O—)的酸叫过酸,如过一硫酸(H2SO5),过二硫酸(H2S2O8)。
4. 把含氧酸的化学式写成MOm(OH)n(M是非金属),就 能根据m值判断常见含氧酸的强弱。
m=0,极弱酸,如硼酸(H3B03)。
m=1,弱酸,如亚硫酸(H2S03)。
m=2,强酸,如硫酸(H2S04)、硝酸(HN03)。
m=3,极强酸,如高氯酸(HC104)。
5. 强酸在水溶液中完全电离;弱酸在水溶液中存在电离平衡 HA
H+ + A-。
K=[H+][A-]/[HA]
电离平衡常数K随弱酸的浓度和温度不同,变化不大。
6. 定义2是根据酸碱质子理论对酸下的定义。
A
H+ +B
HC1= H++Cl-
H2PO4-
H+ +HPO42-
NH4+
H+ +NH3
HC1、H2SO4叫分子酸,H2P04-、NH4+叫离子酸,A和B互为共轭酸碱对。
【定义】
氧元素跟其它元素形成的二元化合物。如氧化钙、二氧化硫、一氧化氮等。氧化物可分为不成盐氧化物(如一氧化碳、一氧化氮等)和成盐氧化物 两类,后者又分为碱性氧化物(如氧化钙)、两性氧化物(如氧化铝)和酸性氧化物(如二氧化碳)。此外还有过氧化物、超氧化物、臭氧化物等。同一种元素往往 有几种不同价态的氧化物,如SO2和SO3;FeO、Fe2O3和Fe3O4等。有时氧化物的含义更广泛,不限于含氧元素的二元化合物,如多元氧化物(如NiFe2O4)和有机氧化物(如氧化乙烯C2H4O2,即环氧乙烷)等。
【分类】
1、不成盐氧化物:又称惰性氧化物或中性氧化物。是既不能跟酸起反应,又不能跟碱起反应的氧化物,如CO和NO等。
2、碱性氧化物:能跟酸起反应,生成盐和水的氧化物。金属氧化物大多数是碱性氧化物,如氧化钙、氧化铜等。碱性氧化物对应的水化物是碱,例如CaO对应的水化物是Ca(OH)2,CuO对应的水化物是Cu(OH)2等,多数碱性氧化物不能直接跟水化合,有些碱性氧化物如CaO能跟水化合生成碱。CaO+H2O=Ca(OH)2,碱性氧化物一般由金属直接氧化或难溶性碱、含氧酸盐受热分解制得。
3、两性氧化物:既能跟酸起反应生成盐和水,又能跟碱起反应生成盐和水的氧化物。例如氧化铝、氧化锌等,某些过渡元素的中间价态的氧化物,如Cr2O3和Mn2O3等也是两性氧化物。两性氧化物对应的水化物是两性氢氧化物。
4、酸性氧化物:能跟碱起反应,生成盐和水的氧化物。非金属氧化物多数是酸性氧化物,某些过渡元素的高价氧化物(如CrO3、Mn2O7等)也是酸性氧化物。酸性氧化物也叫酸酐,例如SO3叫硫酐,CO2叫碳酐。酸性氧化物对应的水化物是含氧酸,如SO3对应的水化物是H2SO4,CO2对应的水化物是H2CO3,SiO2对应的水化物是H2SiO3等。酸性氧化物多数能跟水直接化合生成含氧酸,少数酸性氧化物(如SiO2)不能直接跟水反应。酸性氧化物一般由非金属直接氧化或含氧酸、含氧酸盐受热分解制得。
【说明】
1.除了有些稀有气体以外,实际上已制得所有元素的氧化物。根据不同的标准,氧化物有以下几种分类。
(1)按酸碱性分,一般分酸性氧化物(如三氧化硫)、碱性氧化物(如氧化钠)、两性氧化物(如氧化铝)和不成盐氧化物(如一氧化氮)。
(2)按价键特征分,有离子型氧化物(如氧化钠)和共价型氧化物(如二氧化碳)。
(3)按晶体结构分,有无限三维晶格氧化物(如二氧化钛)、层状晶格氧化物(如三氧化钼)、链状晶格氧化物(如三氧化铬)和分子结构氧化物(如二氧化碳)。
2.同种元素往往有几种不同价态的氧化物,如SO2和SO3,As2O3和As2O5,FeO、Fe2O3和Fe3O4等。在Fe3O4中,Fe有两种不同的价态,一般把Fe3O4看作是FeO·Fe2O3,经x射线研究证明,它是一种铁(Ⅲ)酸盐,化学式是FeⅡFeⅢ[Fe3Ⅲ4]。
3.有人认为氧化物是指氧跟电负性比氧小的元素所形成的二元化合物。从这个观点看,OF2不属于氧化物,而属于氟化物。
4.氧化物中还有过氧化物(如过氧化钠、过氧化氢)和超氧化物(如超氧化钾KO2)。过氧化物和超氧化物都具有强氧化性。
5.有时氧化物的含义比较广泛,如NiFe2O4、YVO4、 Y3Al5O12等叫混合氧化物或多元氧化物。还有一类叫有机氧化物,如C2H4O2叫环氧乙烷或氧化乙烯、C3H6O叫环氧丙烷或氧化丙烯。
6.同周期元素的氧化物,随着原子序数的递增,碱性减弱而酸性增强。同族元素的氧化物,随着原子序数的递增,碱性增强而酸性减弱。同种元素形成不同价态的氧化物时,随着价态的递增,氧化物的酸性增强。
【定义】简称酐。含氧酸脱水后生成的氧化物或羧酸的分子间和分子内脱水缩合而产生的有机物,都叫做酸酐。例如三氧化硫SO3为硫酐,可看作H2SO4分子缩去一个分子水而成;五氧化二磷(P2O5)为磷酐,可看作两个H3PO4分子缩去三个水分子而成;醋(酸)酐(CH3CO)2O,可以看作由两个醋酸CH3COOH分子缩去一个分子水而成。酸性氧化物也叫酸酐,但酸酐不一定是氧化物,例如醋酐。
【说明】
1.SO3、N2O5、P2O5分别是 H2SO4、HNO3、H3PO4的酸酐,叫做硫酸酐(简称硫酐)、硝酸酐、磷酸酐。酸酐中的成酸元素跟对应水化物(即含氧酸)中的成酸元素,如SO3和H2SO4,N2O5和HNO3,它们的化合价相同。
2.通常酸酐跟水化合而生成对应的酸。
SO3+H2O =H2SO4 N2O5+H2O=2HNO3
个别酸酐不能跟水反应,如SiO2不溶于水,但H2SiO3的酸酐仍是SiO2
3.有时候酸酐跟水结合能生成几种酸,则该酸酐同时成为几种酸的酸酐。例如,P2O5跟不同数目的水分子结合,能生成偏磷酸(HPO3)、磷酸(H3PO4)和焦磷酸(H4P2O7)等。
4.大多数含氧酸的酸酐是非金属氧化物,但也有一些是金属氧化物。例如高锰酸(HMnO4)的酸酐是Mn2O7,重铬酸(H2Cr2O7)的酸酐是CrO3。
5.有机酸酐不是氧化物,例如,乙酸酐是由乙酸分子间脱水而得到的。有的有机酸酐是由分子内缩水而得到的。通常用脱水剂(如P2O5、乙酸酐)跟羧酸共热而脱水来制有机酸酐。
【无机物】是无机化合物的简称,通常指不含碳元素的化合物。但少数含碳的化合物,如一氧化碳、二氧化碳、碳酸盐、氰化物等也属无机物。无机物大致可以分为氧化物、碱、酸和盐四大类。
【定义】碱中的氢氧根离子部分被中和的产物,它是由金属阳离子、氢氧根离子和酸根阴离子组成的。例如碱式氯化镁[mg(OH)Cl]、碱式碳酸铜[Cu2(OH)2CO3]。
【说明】
1、Na2CO3溶液加入铜盐溶液得到绿色Cu2(OH)2CO3沉淀。自然界存在的Cu2(OH)2CO3俗称孔雀绿。
2、碱式盐的溶解度一般不大,但溶于强酸,受热的分解,例如:
Cu2(OH)2CO3==2CuO+CO2↑+H2O
【定义】酸中的氢离子部分被碱中和的产物,它是由金属阳离子(或铵根离子)和酸式酸根离子组成,例如KHSO4、NaHCO3、NH4HCO3等。
【说明】
1、大多数酸式盐的溶解度大于正盐,例如Ba(HCO3)2、Ca(H2PO4)2在水中易溶而BaCO3、Ca3(PO4)2难溶。NaHCO3在水中 的溶解度小于CO2,往饱和的Na2CO3溶液中通入足量CO2,便可析出NaHCO3晶体。
2、酸式盐的水溶液不一定显酸性。KHSO4在水中完全电离出 H+、K+、SO42-;NaHCO3溶液中,HCO3-离子既能电离产生H+,又能水解产生OH-,由于水解趋势大于电离趋势,溶液呈弱碱性;NaH2PO4溶液,水解趋势小于电离趋势,溶液呈弱酸性;
3、弱酸酸式盐有两性,既能跟酸反应,又能跟碱反应。例如:
Ca(H2PO4)2+2Ca(OH)2==Ca3(PO4)2↓+4H2O
NaHCO3+HCl==NaCl+H2O+CO2↑
4、含氧酸的酸式盐,其热稳定性一般小于正盐,大于相应的酸,例如:CaCO3> Ca(HCO3)2> H2CO3
5、常温酸式盐可由多元酸与适量的碱式盐反应生成,例如:
NaOH+CO2==NaHCO3
NaCl固+H2SO4浓==NaHSO4+HCl↑
Ca3(PO4)2+4H3PO4==3Ca(H2PO4)2
【正盐】金属阳离子(或铵离子)和酸根阴离子组成的化合物。正盐是酸跟碱完全反应(中和完全)的产物。例如,磷酸与氢氧化钠完全反应:
H3PO4+3NaOH
Na3PO4+3H2O
若多元酸未被碱完全中和,则生成酸式盐:
H3PO4+NaOH
NaH2PO4+H2O
H3PO4+2NaOH
Na2HPO4+2H2O
多元碱未被酸完全中和,则生成碱式盐:
Mg(OH)2+HCl
Mg(OH)Cl+H2O
由此可见,多元酸(或碱)与碱(或酸)反应生成的盐,究竟是正盐、酸式盐,还是碱式盐,取决于反应物的物质的量之间的比值。参看酸式盐、碱式盐。
【两性氢氧化物】既能跟酸反应,又能跟碱反应,分别生成盐和水的氢氧化物,例如Al(OH)3和Zn(OH)2。两性金属氢氧化物都难溶于水。Al(OH)3 溶于盐酸生成铝盐,溶于NaOH溶液生成偏铝酸盐。
Al(OH)3+3HCl=AlCl3+3H2O
Al(OH)3+NaOH=NaAlO2+2H2O
氢氧化物的两性是由它既能进行酸式电离,又能进行碱式电离决定的,例如Al(OH)3在水中:
AlO2- +H+ +H2O
Al(OH)3
Al3+ +3OH-
未溶的Al(OH)3与两种电离产生的离子建立动态平衡。当加入盐酸时,平衡向右移动,Al(OH)3继续溶解,发生碱式电离产生OHˉ,与盐酸中和生成AlCl3和H2O;当加入NaOH溶液时,平衡向左移动,Al(OH)3也继续溶解,发生酸式电离产生H+ 与NaOH中和生成NaAlO2和H2O。Al(OH)3是典型的两性氢氧化物,它的酸性和碱性都很弱。
两性氢氧化物表现酸性时,可写成酸的形式,例如H3AlO3、H2ZnO2。一些非金属氢氧化物以酸性为主,一般写酸的形式,例如亚砷酸(H3AsO3)。
【络合物】含有络离子的一类复杂化合物,例如冰晶石Na3[AlF6]、硫酸四氨合铜(II)[Cu(NH3)4]SO4、氢氧化二氨合银[Ag(NH3)2]OH等。上述络合物的化学式中,用方括号括起的部分叫络离子,是络合物的内界,方括号以外的部分是络合物的外界。络离子是由中心离子(或原子)和配位体以配位键结合而成。常见的中心离子是过渡元素离子如Fe2+、Fe3+、Cu2+、Ag+、Hg2+等;常见的配位体有F-、Cl-、Cn-、SCN-离子和NH3·H2O等分子。它们之间容易形成络离子如[Fe(SCN)]2+、[Ag(NH3)2]+、[Cu(H2O)4]2+等。络合物的内界与外界以离子键结合,络合物溶于水时,完全电离产生络离子:[Ag(NH3)2]OH
[Ag(NH3)2]++2OH-
络离子比较稳定,在水溶液中部分电离。
[Ag(NH3)2]+
Ag++2NH3
络合物普遍存在。例如人体中的血红素是Fe3+的络合物,植物体内的叶绿素是Mg2+的络合物。络合物广泛应用于工农业生产和科学技术,例如金的提取、电镀、照相技术,离子的鉴定和测定等。络合物,现称为配位化合物,简称配合物。
【同素异形体】(亦称同素异性体)同种元素组成的不同单质,例如石墨和金刚石、氧气和臭氧、白磷和红磷等。同素异形体的分子组成或晶体结构不同,它们的物理性质和化学性质有明显的区别,
例如金刚石是由碳原子以共价键连接形成的正四面体空间网状结构的原子晶体;石墨是一种层状结构的过渡型晶体,层内碳 原子以共价键结合形成正六边形网状结构,层与层之间距离较大,相当于分子间力的作用。金刚石是硬度最大的物质,不能导电;而石墨的硬度较小,层之间可以相 对滑动,导电性好,化学性质较金刚石活泼。
又如白磷和红磷,白磷是由正四面体结构的分子(P4)组成,为白色腊状固体,有剧毒,易溶于CS2,着火点低(40℃),在空气中可自燃;红磷是较复杂的层状晶体,红色粉末,无毒,不溶于CS2,着火点240℃。隔绝空气加热温度升至260℃时,白磷转变成红磷,红磷受热在416℃时先升华,蒸气冷却又变为白磷。
O2和O3的分子组成不同,O3是较O2更活泼的氧化剂。
【乙二酸】分子式C2H2O4,分子量90.04。俗称草酸。是最简单的二元羧酸。存在于酢浆草、酸模草和大黄等植物体内。通常以二水合物的形式存在。有毒。其二水合物熔点101~102℃,密度(19/4℃)1.653克/厘米3。无水物熔点189.5℃、密度(17/4℃)1.90克/厘米3、约在157℃时升华。酸性,K1=5.36×10-2,K2=5.3×10-5。溶于水、乙醇和乙醚,可用作分析试剂,并可用于棉布印花和染色、草编物和皮革的漂白,还可用于提炼稀有金属,除去衣服上的铁锈和墨水渍等。可以木屑为原料与氢氧化钠熔融成草酸钠制得;或将乙二醇控制氧化制得;也可将一氧化碳通过浓氢氧化钠水溶液或将甲酸钠与氢氧化钠或碳酸钠混和加热制得。
【乙酸酐】分子式C4H6O3,分子量102.09。俗称醋酸酐,简称醋酐。无色液体,有醋酸味。易燃烧,有折射性。熔点-73℃,沸点139℃。密度(20/4℃)1.0820克/厘米3。在水中慢慢水解成乙酸。溶于乙醇,发生醇解反应生成乙酸乙酯和乙酸,与氨发生氨解反应生成乙酰胺。溶于乙醚、苯和氯仿。主要用于制醋酸纤维素、染料,药物等。工业上用乙醛在醋酸钴-醋酸铜催化下被氧气氧化、或由乙烯酮与乙酸加成后经重排制成;也可用乙炔和乙酸在氧化汞存在下作用再经分解制得。
【丙酮】分子式C3H6O,分子量58.08。亦称二甲酮。无色液体,易挥发,有微香气味。是最简单的饱和酮。熔点-94.6℃、沸点56.5℃,密度(20/4℃)0.7898克/厘米3,折射率(20℃)1.3591。能与水、甲醇、乙醇、乙醚、氯仿等混溶。能溶解油、脂肪、树脂和橡胶等。其蒸气能与空气形成爆炸性混和物、爆炸极限为2.55~12.80%(体积)。化学性质较活泼,能起卤代、加成、缩合等反应。是制造醋酐、双丙酮醇、环氧树脂、异戊橡胶、甲基丙烯酸甲酯等的重要原料。在无烟火药、赛璐珞、醋酸纤维、喷漆等工业中用作溶剂。在油脂工业中用作提取剂。工业上可用粮食发酵法制取,丙烯水合成异丙醇,再经催化氧化制取;木材干馏法制取;异丙苯经空气氧化后再水解制取。
【环氧乙烷】分子式C2H4O,分子量44.05,亦称氧化乙烯或恶烷。是最简单的环醚。常温常压下是无色气体,易燃烧。12℃以下为液体。熔点-111℃,沸点13.5℃,密度(20/4℃)0.8694克/厘米3,与空气形成爆炸性混和物,爆炸极限3.6~78%(体积)。溶于水、乙醇和乙醚。化学性质很活泼,能与许多化合物起加成反应,特别是与亲核试剂发生开环反应。主要用于制取乙二醇,制抗冻剂、合成洗涤剂、乳化剂、塑料等。还可用作仓库、食品和纺织品的熏蒸剂。工业上用乙烯催化氧化或者用氯乙醇与氢氧化钙反应制得。
【乙醚】分子式C4H10O,分子量74.12。亦称二乙醚,结构简式C2H5—O—C2H5。无色透明液体,有特殊气味。极易挥发,易燃烧。熔点-116.2℃,沸点34.5℃。密度(20/4℃)0.7135克/厘米3。难溶于水,易溶于乙醇和氯仿等有机溶剂。其蒸气与空气形成爆炸性混和物,爆炸极限为1.85~36.5%。易吸收氧气生成过氧化物,这是爆炸性极强的一种高聚物。为防止或减少过氧化物的生成,常在乙醚中加入少量抗氧剂。能溶解脂肪、脂肪酸和大多数树脂,用作溶剂和外科手术的麻醉剂。工业上是在300℃下以氧化铝为催化剂使乙醇脱水制得。
【对映异构】即旋光异构。在分子中,与四个不同原子或原子团直接相连的碳原子叫做不对称碳原子,如乳酸分子中,与甲基、羟基、羧基、氢原子直接相连的碳原子,不对称碳原子周围的四个不同原子或原子团可以有两种互为镜象关系,但不能彼此重合的四面体空间构型,这两种构型互为对映异构体。对映异构体的物理及化学性质都相同,但在一定条件下的旋光方向相反。使偏振光左旋的为“左旋体”,使偏振光右旋的为“右旋体”,左旋体用L-或(-)-表示,右旋体用D-或(+)-表示。乳酸对映异构体费歇尔投影式可表示如下:
【烃的衍生物】烃分子里的氢原子被其它原子或原子团所取代,生成一系列新的有机物。这些有机物,从结构上说,都可以看做是由烃衍变而来的,所以叫做烃的衍生物。不同的衍生物具有不同的化学性质。烃的衍生物种类很多,如卤代烃、醇、酚、醚、醛、酮、羧酸、酯、硝基化合物等。从结构上看,它们的衍变关系是:
【醋酸钙】 化学式(CH3COO)2 Ca·H2O,式量176.2。俗名醋石,别名乙酸钙。白色针状晶体或结晶性粉末,微有乙酸气味。溶于水,微溶于乙醇。加热时醋酸钙分解为碳酸钙和丙酮。
跟硫酸等反应生成醋酸。用于制丙酮、醋酸及印染业。工业上用木醋液(木材干馏产物)跟消石灰反应,蒸干滤液,再经重结晶制得醋酸钙。用纯醋酸跟纯碳酸钙反应可制得纯醋酸钙。
【乙醇的结构】
乙醇的分子组成是C2H6O。其分子结构有两种可能,即:

用实验方法可以确定乙醇的分子结构究竟是哪一种:用一定量的无水乙醇,令其跟过量金属钠反应后,测量出所生氢气的体积,再把它换算成标准状况。经过进一步计算,最后结果是每摩乙醇只能生成约0.5摩氢气。由此可知,每个乙醇分子中只有一个氢原子被钠置换。那么,乙醇分子中原子排列顺序只有是上述的右式才是合乎实验结果的。乙醇分子中羟基的氢原子和氧原子间的电子云靠近氧原子,因之使氢原子具有一定/程度的离子化倾向,故可被活泼的金属原子(如K、Na、Mg)所置换。
【乙醇的物理】
性质乙醇分子由烃基(—C2H5)和官能团羟基(—OH)两部分构成,其物理性质(熔沸点、溶解性)与此有关。乙醇是无色、透明、有香味、易挥发的液体,熔点—117.3℃,沸点78.5℃,比相应的乙烷、乙烯、乙炔高得多,其主要原因是分子中存在极性官能团羟基(-OH)。密度0.7893克/毫升,能与水及大多数有机溶剂以任意比混溶。乙醇水溶液的体积百分数称为“度”,用来表示乙醇的浓度。各种饮用酒里都含有乙醇,啤酒含3~5%(3~5度),葡萄酒含6~20%(6~20度),黄酒含8~15%(8~15度),白酒含50~70%(50~70度)。酒精过量能引起中毒,因此青少年不能饮用含酒精的饮料。工业酒精含乙醇约95%。含乙醇达99.5%以上的酒精称无水乙醇。含乙醇95.6%水4.4%的酒精是恒沸混合液,沸点为78.15℃,其中少量的水无法用蒸馏法除去。制取无水乙醇时,通常把工业酒精与新制生石灰混合,加热蒸馏才能得到。工业酒精和卫生酒精中含有少量甲醇,有毒,不能掺水饮用。
【乙醇的化学性质】
主要是由羟基(—OH)官能团引起的,在化学反应中涉及到两种键的断裂:C-O键断裂而脱掉—OH,如与氢卤酸的取代反应和浓硫酸存在下的脱水反应;或O-H键断裂而脱掉—H,如与金属钠的置换反应和有机酸的酯化反应;与羟基相连碳原子上的氢还能发生氧化反应。如下表页所示。
【乙醇的用途】
乙醇是应用最广泛的一种醇。因其性质比较活泼,是有机合成的重要原料,如用乙醇制乙醚、乙醛、乙酸等;因它具有广泛的溶解性,是重要的有机溶剂,用于溶解树脂、制作涂料等;因其在空气中燃烧充分,可避免污染,而且燃烧热值较大。


可用作内燃机和实验室的燃料;因75%的酒精能立即使蛋白质变性(凝固),在医药上常用作消毒剂和防腐剂;乙醇还广泛用作饮料和食品添加剂,但必须注意:不能超量饮用,以免引起酒精中毒,青少年尤其不宜饮用含酒精的饮料;工业酒精中含有毒性的甲醇,决不能饮用。
【乙醇的工业制法】
我国劳动人民早在几千年前就掌握了发酵酿酒术,至今,发酵法仍是制备乙醇的重要方法。发酵法以富含淀粉的各种谷物和野生果实为原料,经下列过程成为发酵液:

发酵液内含乙醇10~15%,发酵液经蒸馏可得含95.6%的乙醇和4.4%水的恒沸液液,称为工业酒精。目前工业上大量生产的乙醇,是以石油裂解气中的乙烯为原料利用水化法制得的(催化剂为硫酸或磷酸):

【苯酚的结构】

似的。苯酚分子中羟基(—O—H)中的氢原子不与苯环处于同一平面上,而是位于苯环所处平面的一侧。羟基的氧原子含有孤对电子,这孤对电子的电子云受苯环电子云的作用而向苯环转移,因之诱导氢氧原子间的电子云向氧原子方向转移,使羟基中氢原子的离子化倾向大为增强,使苯酚在水中能微弱电离而呈弱酸性。

苯酚分子中,由于羟基的存在,使得苯环的活泼性增强,特别是羟基的邻对位上的氢原子易被取代。
【苯酚的化学性质】
苯酚分子中含有羟基(-OH),也可以发生O-H键断裂和C—O键断裂。但酚与醇结构不同,酚羟基与苯环直接相连,因此酚的O-H键容易断裂,而C—O键却很难断裂,此外由于酚羟基的影响,增大了苯环上邻、对位上氢的活性,容易被取代。
【苯酚的用途】
苯酚是一种重要的有机合成原料,可用来制取酚醛塑料(电木)、*合成纤维(锦纶)、医药、染料、农药等。苯酚可凝固蛋白质,有杀菌效力,苯酚稀溶液是医药上最早使用的喷洒消毒剂,商品“来苏儿”(Lysol)消毒药水就是苯酚和甲苯酚的肥皂液,药皂中也掺入少量的苯酚。苯酚催化加氢即生成环己醇,是合成尼龙66的原料之一:

苯酚的工业制法
苯酚有四种工业制法。(1)苯酚和它的同系物存在于煤焦油中,可将煤焦油的中间馏分,经碱液提取,再经酸化制取苯酚,但此法产量有限。

(2)苯磺酸碱熔法

此法产率高,但操作工序繁多,消耗大量硫酸和烧碱,对设备腐蚀严重。
(3)氯苯水解法
(4)异丙苯氧化水解法

此法每生产一吨苯酚可同时获得0.6吨丙酮。
芳香烃苯环(苯环或稠苯环)上的一个或几个氢原子被羟基(—OH)代换后的生成物属酚类。如:

都属酚类。根据分子中含羟基的数目,酚类可分为一元酚、二元酚、多元酚。绝大多数酚为结晶固体,多数微溶或难溶于冷水,较易溶于热水,溶于乙醇、乙醚等有机溶剂,如沾有酚类的玻璃容器需用乙醇清洗。酚类是芳香烃基和羟基结合而成,但芳香烃基和羟基之间存在着相互影响,使羟基具有不同于醇羟基的新的特性,即酸羟基显示弱酸性,能跟强碱作用生成酚盐;同时,芳香烃基受羟基的影响,较芳香烃易发生卤化、硝化、磺化等取代反应,如苯不跟溴水发生反应,而苯酚却跟溴水很容易反应生成三溴苯酚。大多数酚跟FeCl3溶液作用显示特殊颜色,如苯酚遇FeCl3。溶液显示紫色。酚来源于煤焦油或芳香烃经磺化再经碱熔而得。酚的主要用途是制染料、药物、酚醛类树脂等。
【乙醛的物理性质】
常温下为无色有刺激性气味的液体,密度比水小(0.7834克/毫升,18℃)熔点为-121℃,沸点为20.8℃,易挥发。易溶于水、乙醇、乙醚和氯仿中。
【乙醛的化学性质】


荷的试剂加到带部分正电荷的碳上,带正电荷的试剂加到带部分负电荷的氧上;乙醛分子中与羰基相连的氢和α碳上的氢都有一定活泼性,可发生氧化还原反应及α-氢的取代反应。
【乙醛的用途】
乙醛是有机合成工业中的重要原料,可用于合成乙酸、乙酐、乙醇、丁醇、三氯乙醛、氯仿等。例如,工业上,乙醛在一定温度和催化剂[Mn(Ac)2]条件下,被空气氧化成乙酸:
2CH3CHO+O2
2CH3COOH
又如氯仿反应:

* 乙醛分子中有C=O极性的影响,沸点比相应的乙烷(C2H6)、甲醚(CH3—O—CH3)高,但乙醛分子间不能形成氢键,其沸点比乙醇低。


【乙醛的工业制法】
乙醛有三种工业制法。
(1)最早是用乙醇氧化法制乙醛

此法要消耗大量粮食,已不再采用。
(2)工艺比较成熟的是乙炔水化法,产率和产品纯度高。

但汞盐毒性很大,严重污染环境。
(3)乙烯直接氧化法,这是乙醛的最新制法。

该法产率高而无污染,是1956年原联邦德国的Wacker公司开发的,故又称瓦格(Wacker)法。
【乙酸的物理性质】
是一种无色有强烈刺激性气味的液体,熔点是16.6℃,沸点是117.9℃,密度1.0492克/毫升,当室温低于16.6℃时,无水乙酸就凝结成冰一样的晶体,故通称冰醋酸。它是食醋的主要成分,普通食醋中含有3~5%乙酸,所以乙酸俗称醋酸。与水互溶并易溶于有机溶剂。
【乙酸的化学性质】

合而成,又彼此影响,因此表现酸性,还可以发生羟基取代生成羧酸衍生物及与羧基直接相连甲基上的氢原子(α-H)的取代反应等。(见表)

【乙酸的用途】
是人类使用最早的酸,在古代就用发酵法酿醋作食品调料。它是重要的有机化工原料,可以生产醋酸纤维(参看纤维素醋酸酯)、合成纤维(如维纶)、醋酸酐、醋酸酯(广泛用做溶剂),也是染料、香料、医药、塑料、油漆工业不可缺少的原料。
【乙酸的工业制法】
最早使用的方法是用粮食发酵法酿醋,至今食醋仍用此法生产,先由淀粉发酵制得酒精,再进一步在醋酸菌作用下氧化为醋。

现在工业上大量用合成法制备,即由乙烯或电石合成乙醛(参看乙醛的工业制法),乙醛在乙酸锰的催化下被氧化成乙酸:

1966年孟山都(Monsanto)公司开发的甲醇羰基化合成乙酸,是乙酸工业制法的重大突破。

此法反应速度快而产率高,而甲醇又可以由一氧化碳和氢制得。

这就意味着可由一氧化碳和氢合成乙酸。目前国外每年用此法生产的乙酸已达千万吨,是最有前途的一种制法。
【注意】
乙酸的沸点高是因为乙酸分子间能以氢键相互结合成双分子缔合的二聚体。

【定义】由两种或几种不同的单质或化合物机械混合而成的物质,叫做混合物。
【说明】【定义】冶金工业上习惯把铁、铬、锰以及它们的合金(主要指合金钢及钢铁)叫做黑色金属。实际上纯净的铁与铬都是银白色的,而锰是银灰色的。之所以把它们叫做黑色金属,是因为钢铁表面常覆盖一层黑色的四氧化三铁,而锰和铬又主要应用于冶炼合金钢,所以人们把铁、铬、锰以及它们的合金叫做黑色金属。
在各种金属中,铁在地壳中分布较集中,储量较丰富,开采和冶炼较多,价格也较廉。铸铁和钢的品种和规格很多,它们是工业上最广泛应用的金属材料,在国民经济中占有极重要的地位。铬与锰主要应用于制合金钢。铁、铬、锰及其合金都不是黑色的,而钢铁表面经常覆盖着一层黑色的四氧化三铁。这样分类,主要是从钢铁在国民经济中的重要地位出发的。
【有色金属】通常是指除铁、铬、锰和铁的合金以外的其它金属。可分为四类:
(1)重金属,如铜、锌、铅、镍等。
(2)轻金属,如钠、钙、镁、铝等。
(3)贵金属,如金、银、铂、铱等。
(4)稀有金属,如锗、铍、镧、铀等。
【重金属】一般是指密度在4.5克/厘米3 以上的金属。例如铜、锌、钴、镍、钨、钼、锑、铋、铅、锡、汞等,过渡元素大都属于重金属。也有把密度在5克/厘米3 以上的金属称为重金属的。
【轻金属】一般是指密度在4.5克/厘米3 以下的金属。例如钠、钾、镁、钙、铝等。周期系中第一、二主族均为轻金属。也有把密度在5克/厘米3 以下的金属称为轻金属的。
按冶金工业中有色金属的分类法,密度小于4.5 g/cm3 的金属并不都归入轻金属,如锂、铷、铯、铍归入稀有金属(分属稀有轻金属),钛归入稀有金属中的难熔金属。
【贵金属】通常是指金、银和铂族金属(包括钌、铑、钯、锇、铱、铂)共8种。这些金属在地壳中含量较少,不易开采,价格较贵,所以叫贵金属。这些金属对氧和其它试剂较稳定,金和银常用来制造装饰品和硬币。
【贵金属】贵金属是有色金属中的一类,包括金、银和铂族金属(钼、钌、 铑、钯、锇、铱)共8种。这些金属在地壳里的丰度低,分布稀散,彼此互溶共生,富集、分离和提纯都较困难,价格较贵,所以得名为贵金属。
大量的银从冶炼铜、铅、锌的阳极泥中回收,金和铂族金属主 要从处理砂矿和矿脉中获得。我国的铂族金属主要从铜、镍、硫化共生矿中回收获得。
金、银常用来制造装饰品和钱币。从19世纪末开始,贵金属和贵金属合金应用于工业和科学研究,现广泛用于航空、航天、原子能、化工、电子工业、冶金工业等部门。
【稀有金属】通常是指自然界中含量较少,比较分散的金属。它们难于从原料中提取,在工业上制备及应用较晚。稀有金属和普通金属没有严格界限,某些稀有金属比铜、汞、镉等金属还多。稀有金属在现代工业中具有重要的意义,往往把黑色金属、有色金属和稀有金属并列为三大类。稀有金属根据其在地壳中的分布状况及冶炼方法,可分为六类:
(1)稀有轻金属,如锂、铷、铯、铍、钛等。
(2)稀有难熔金属,如钨、钼、铌、钽、铪、钒等。
(3)稀有分散金属(或称稀散金属),如镓、铟、铊、锗等。
(4)稀土金属,包括钪、钇和镧系元素。
(5)稀有贵金属,指铂族元素。
(6)稀有放射性金属:包括钋、钫、镭、锕、钍、镤、铀以及从1940年以来陆续发现的十多种人造放射性元素。
【稀有金属】稀有金属通常指在地壳中含量较少或分布稀散的金属。它们难以从原料中经济地提取,制取和使用得很少,因此得名为稀有金属。近半个世纪以来,稀有金属的研究、生产和应用迅速发展,有些稀有金属已经不“稀”,如钛在现代技术中的应用日益广泛、产量增多,所以有人也把它列入轻金属。
我国稀有金属资源丰富,例如,钨、钛、稀土、钒、锆、钽、铌、锂、 铍等已探明的储量都居于世界前列。我国内蒙的包头市境内稀土储量占全国的97%,占世界储量的77%,是闻名世界的“稀土之 都”。包头稀土高新技术产业是国家级的,预计到本世纪末将成为全球最大的稀土工业之城。
【不成盐氧化物】不能跟酸起反应,又不能跟碱起反应而生成盐和水,这类氧化 物叫做不成盐氧化物。例如,NO、CO属于不成盐氧化物。一氧化碳能跟氢氧化钠起反应,生成甲酸的钠盐。
CO+NaOH→HCOONa,但是在生成盐时没有生成水,所以一氧化碳仍属于不成盐氧化物。【定义】能跟碱起反应而生成盐和水,这种氧化物叫做酸性氧化物。
【说明】【定义】能跟酸起反应,生成盐和水,这种氧化物叫碱性氧化物。
【说明】【定义】能跟酸反应生成盐和水,又能跟碱反应生成盐和水,这种氧化物叫做两性氧化物。
【说明】【定义】由一定数量的配体(阴离子或分子)通过配位键结合于中心离子(或中性原子)周围而形成的跟原来组分性质不同的分子 或离子,叫做配合物。
【说明】【定义】
1. 它是带电的原子或原子团。
2. 它是由原子(包括原子团)或分子失去或得到电子后形成 的带电粒子。
【说明】
1. 原子失去电子后带正电荷,变成阳离子(或正离子);得到电子后带负电荷,变成阴离子(或负离子)。带电的原子团如高锰 酸根离子(Mn04-)、铜氨络离子{[Cu(NH3)2+}等,后者用定义2就难以说明。
2. 简单离子有三个重要特征,它们对离子的性质有决定性的影响。
(1) 离子电荷 简单离子所带的电荷数,就是该元素的化合价。例如,Fe-2e-→Fe2+ , Fe2+带2个单位正电荷,铁的化合价是+ 2。Fe2+有还原性,而Fe3+有氧化性。
(2) 离子半径 测定离子化合物的核间距,可以算出离子的半径,如rI-=216pm, rBr-=195pm。I-和Br-有相同的最外电子层结构,但因rI->rBr- ,I—容易失去电子,表现较强的还原性。
(3) 离子的电子层结构 离子的电子层结构有惰性气体构型 [如Na+ (2s22p6), F-(2s22p6) ]、18电子构型[如Zn2+ (3s23p6Sd10)、 Ag+ (4s24p64d10)]和不饱和构型[如 Pb2+ (6s2)、Fe2+ (3s23p63d6)] 三类
3. 离子一般存在于电解质溶液和离子化合物的熔融状态中。 在电弧、火焰或气体放电管中也能发现有简单离子或简单分子的离子。例如,在放电管或阴极射线中可以证明有H2+
【定义】含有结晶水的固体物质,叫做水合物(曾用名:结晶水合物)。
【说明】
1. 结晶水合物中的水分子是以确定量存在的,如FeCl3•6H20、FeS04•7H20、Ba(OH)2•8H20 和 ZnS04•7 H20等。 因此,结晶水合物是纯净物。
2. 水合物中的水分子有各种结合方式。一种是作为配位体, 配位在金属离子上,叫配位结晶水。另一种结合在阴离子上,叫阴离子结晶水。例如,CuSO4•5H20加热到113°C,只失去4分子水,加热到258°C才能脱去最后1分子水。由此推断,它的结构是 [Cu(H2O)4]2+ [SO4(H2O)]2- 。
【定义】在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。
【说明】
1.诱导效应的特征是电子云偏移沿着σ键传递,并随着碳链的增长而减弱或消失。例如,醋酸是弱酸(pK=4.76),醋酸分子中的α-碳原子上引入一个电负性比氢强的氯原子后,能使整个分子的电子云向氯原子偏移,结果增强了羟基中氢原子的质子化,使一氯醋酸成为强酸(pK=2.86,酸性比醋酸强)。
正戊酸的末端引入一个氯原子,对羟基影响很微弱,酸的电离能力几乎不增强,诱导效应已微弱到可以忽略不计。
2.比较各种原子或原子团的诱导效应时,常以氢原子为标准。吸引电子能力(电负性较大)比氢原子强的原子或原子团(如 —X, —OH. -N02, —CN等)有吸电子的诱导效应(负的诱导效应),用-I表示,整个分子的电子云偏向取代基。吸引电子的能力比氢原子弱的原子或原子团(如烷基)具有给电子的诱导效应 (正的诱导效应),用+I表示,整个分子的电子云偏离取代基,
甲基的作用跟氯原子相反,它使羧酸的酸性降低(HCOOH的pK=3.77,CH3COOH 的 pK=4.76)。
【定义】在单键和双键相互交替的共轭体系或其他共轭体系中,由于π电子的离域作用使分子更稳定、内能降低、键长趋于平均化,这种效应叫做共轭效应。
【说明 】
1. 诱导效应和共轭效应都能使体系的电荷分散、能量降低、 稳定性增加。但是两者的区别是诱导效应主要通过σ键传递,而且传递二三个原子后就迅速减弱到可以忽略不计。共轭效应主要i通过π键传递,能从共轭体系的一端传递到较远的一端。
2. 共轭效应分静态共辄效应和动态共扼效应。静态共轭效应是在没有外界的影响下表现的一种内在性质。例如,苯分子中各碳原子共平面,相邻π键交叠而成共轭,使6个碳碳键的键长平均化,使体系趋于稳定。动态共轭效应是在外界条件(如试剂)影响下使分子中的电子云密度重新分配,分子的极性增大。例如: 1,3-丁二烯跟卤化氢反应时,由于动态共轭效应使加成反应主要发生1,4-加成。
3. 如果共轭体系中的取代基能降低体系的电子云密度,则这些基团有吸电子共轭效应,如-NO2、—CN、一COOH、一CHO、一COR 等。如果取代基能增加共轭体系的电子云密度,则这些基团有给电子的共轭效应。这类取代基如—NH2、—Cl、-OH。
【定义】无机或有机含氧酸分子中去掉羟基(-OH)后剩余的基团,叫做酰基。例如,HO—NO2 硝酸 ,-NO2 硝酰基; HO—SO3H 硫酸,-SO3H 磺酰基;CH3COOH 乙酸,CH3CO- 乙酰基。
【说明】
1.在有机化学中,酰基主要指具有R—C=O结构的基团。醛、 酮、羧酸、铵酸衍生物等几乎都有酰基。酰基不是一种区别有机物类别的基团。
2.有机化合物分子中的氮、氧、碳等原子上引入酰基的反应 统称为酰化,但习惯上把碳原子上引人硝基、磺基和羧基(羧基可作为碳酸的酰基)的反应分别叫硝化、磺化和羧基化。
【定义】有机化合物分子内或分子间脱去羟基和氢并结合而形成水分子,这种反应叫做脱水反应。
【说明】脱水反应主要有四种:
1.醇类脱水,生成物因反应条件而异。例如,
R-CH2-CH2-OH → RCH=CH2 + H2O (分子内脱水)
(烯烃)
2R—OH →R —O—R + H2O (分子间脱水)
(醚)
一般情况下较低温度有利于分子间脱水,较高温度有利于分子内脱水。
2. 羧酸脱水。例如,
3. 羧酸铵盐脱水。例如,

4.酰胺脱水。例如,

【定义】有机化合物分子在高温和催化剂或脱氢剂存在的条件下脱去氢,这种反应叫做脱氢反应。
【说明】脱氢反应是一种消除反应,也是氧化皮应的一种形式< 多种有机物能发生脱氢反应。例如,
1.烷、烯烃脱氢



【定义】醇跟羧酸或含氧无机酸生成酯和水,这种反应叫酯化反应。
【说明】
1、酯化反应是可逆的,它的逆反应是水解反应。在通常状况下,该可逆反应需要很长时间才能达到平衡。为了缩短达到平衡的时间,常用浓硫酸等作催化剂,工业上用阳离子交换树脂作酯化的催化剂。
2、在酯化反应中,通常由羧酸提供羟基(羧酸跟有些叔醇酯化时,羟基由叔醇提洪),反应历程如下:


首先是羧酸的羰基质子化,便羰基碳原子带有更多的正电荷, 醇就容易发生亲核加成,然后质子转移,消除水,再消除质子,就形成酯。
3、广义的酯化反应还包括醇跟酰氯或酸酐、卤代物跟羧酸钠盐以及酯交换反应等。
【定义】
1. 分子中氧原子的两个价键(一O一)分别跟两个烃基碳原子连接的化合物叫醚。
2, 醚是有C—O—C结构的有机化合物的总称。
【说明】
1.醚分子中跟氧原子连接的两个烃基相同的叫单醚,不同的叫混醚。简单的醚命名时,先写出烃基的名称,再加上“醚”字,并常省去烃基的“基”字。命名单醚时省略名称前面的“二”字。命名混醚时,把较小的烃基放在名称的前面,芳烃基放在烷基的前面。
2.醚跟醇、酚不同,分子结构中没有活泼的羟基,因此性质比较稳定。醚分子结构中的氧原子具有未共用电子对,所以醚能跟强无机酸作用,形成类似铵盐的化合物,这类化合物叫
盐。
盐使醚的碳氧键(C-O)变弱,容易断裂,结果烃氧基能被其他原子或原子团取代。低级醚(如乙醚等)在储存时跟空气长期接触,会逐步氧化成有机过氧化物。这种过氧化物受热时容易爆炸。
【水杨醛】分子式C7H6O2, 分子量112.12, 又称邻羟基苯甲醛。无色或深红色油状液体。具有苦杏仁气味。熔点-7℃, 沸点196.5℃、密度(20/4℃)1.167克/厘米3 。微溶于水, 溶于乙醇、乙醚和苯中。能与蒸气一起挥发。与硫酸作用呈桔红色, 与金属离子可形成有色螯合物。遇三氯化铁溶液显紫色。可被还原成水杨醇。主要用于生产香豆素, 配制紫罗兰香料, 还可用作杀菌剂。可由苯酚和氯仿在氢氧化钠溶液中、通过菜默尔—悌曼反应制得。
【苯甲醛】分子式C7H6O分子量:106.12。略带苦杏仁味的无色的无色液体。凝固点-56.5℃, 沸点179℃, 密度(20/4℃)1.046克/厘米3 。微溶于水, 能与乙醇、乙醚、氯仿、苯混溶、化学性质不稳定, 遇空气逐渐氧化成苯甲酸, 可还原成为苯甲醇。能还原银氨溶液, 但不与斐林试剂作用。要密封和避光保存。自然界中苯甲醛以苦杏仁苷的形式存在于苦杏仁中, 能与水一起蒸馏。是一种重要的化工原料。用于制肉桂醛、肉桂酸、苯乙醛等, 也是生产香料的原料。工业上由甲苯氧化或由苯二氯甲烷水解制得。
【甲酸】分子式CH2O2, 分子量46.03, 俗称蚁酸。是醌最简单的羧酸。无色液体, 有刺激性气味。熔点8.4℃、沸点100.5℃、密度(20/4℃)1.220克/厘米3 。溶于水、乙醇、乙醚等。酸性较强, 有腐蚀性, 能刺激皮肤。有还原性, 易被氧化生成二氧化碳和水。用于制取甲酸盐和甲酸酯, 也用作消毒剂和防腐剂。可由甲烷氧化制取, 或将一氧化碳与氢氧化钠在高温高压下作用, 生成甲酸盐, 再用硫酸分解制得。
【水杨酸】分子式C7H6O3, 分子量138.12。又名邻羟基苯甲酸。白色针状晶体或单斜晶体。熔点159℃、沸点221℃(2666帕——20mmHg)升华, 密度(20/4℃)1.443克/厘米3 。热至76℃时升华。微溶于冷水, 易溶于乙醇、乙醚、氯仿和热水。有解热镇痛作用, 但毒性较大。可用作食品的防腐剂。染料的中间体。消毒剂、配制水杨酸软膏和制造阿斯匹林。可由苯酚钠与二氧化碳在压力下反应后再酸化制得。
【阿斯匹林】分子式C9H8O4分子量180.15。学名乙酰水杨酸。白色针状或结晶性粉末, 无臭、略有酸味。熔点135℃~138℃, 密度1.35克/厘米3 。在干燥空气中稳定, 遇潮会缓缓水解为水杨酸和醋酸。微溶于水, 溶于乙醇、乙醚、氯仿, 在沸水中分解, 在氢氧化钠和碳酸钠溶液中分解。用作消炎药、止痛药和解热药。可用少量硫酸为催化剂, 使乙酸酐与水杨酸作用制得。
【高分子溶液】高分子化合物溶于适当的溶剂中可形成高分子溶液。高分子溶液具有双重性质, 一方面由于这种分散相微粒大小与溶胶粒子相近, 表现出溶胶的某些特性;另一方面高分子溶液是分子分散体系, 又有某些真溶液的特点。
高分子溶液和胶体溶液有许多不同之处:
(1)高分子溶液是单相体系, 胶体是多相体系。
(2)高分子溶液分散相极易溶剂化, 这是因为高分子化合物组成中, 常含有大量亲水基团, 如—OH、-COOH、-NH2等, 而胶体微粒的溶剂化能力比高分子化合物弱得多。
(3)高分子溶液中分散相微粒一般不带电荷, 胶体微粒则是带电的, 高分子溶液的稳定性是它的高度溶剂化起了决定性作用。
(4)高分子化合物溶解的过程就是溶剂化过程, 当用蒸发的方法除去溶剂后再加入溶剂仍能自动溶解, 它的溶解过程是可逆的, 而胶体中的胶粒一旦凝聚, 一般很难或者不能用简单加入溶剂的方法使之复原。高分子溶液还有一项与真溶液和溶胶都不同的特性, 就是有较大的粘度。