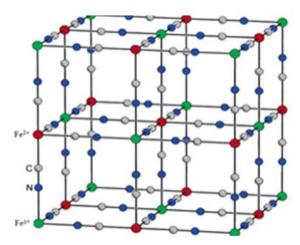
化学工艺流程之铁及其化合物

一、知识清单

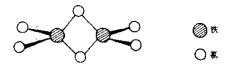

铁的主要矿石:赤铁矿(Fe_2O_3)、磁铁矿(Fe_3O_4)、褐铁矿($2Fe_2O_3 \bullet 3H_2O$)、菱铁矿($FeCO_3$)、黄铁矿(FeS_2)。

一般条件下,铁的常见价态为+2和+3,与很强的氧化剂作用,铁可以生成不稳定的+6价的化合物(高铁酸盐)。

氧化亚铁:在隔绝空气的条件下,将草酸亚铁加热,可以制得黑色的氧化亚铁,反应 方程式为 FeC_2O_4 —— $FeO+CO+CO_2$ 。

硫酸亚铁与碱金属硫酸盐形成复盐 $M^{T}_{2}SO_{4}$ •FeSO₄•6H₂O,对于空气的氧化,亚铁的复 盐要稳定得多。硫酸亚铁铵[FeSO₄•(NH₄)₂SO₄•6H₂O],俗称摩尔盐,在定量分析中用来标 定重铬酸钾或高锰酸钾溶液的浓度,反应的方程式分别为 10FeSO₄+2KMnO₄+8H₂SO₄=5Fe₂(SO₄)₃+ K_{2} SO₄+2MnSO₄+8H₂O、6eSO₄+ K_{2} Cr₂O₇+7H₂SO₄=3Fe₂(SO₄)₃+ K_{2} SO₄+Cr₂(SO₄)₃+8H₂O。这个两个反应也可以用来分析测定铁。

黄血盐: 六氰合铁(II)酸钾,又名亚铁氰化钾,化学式为 $K_4[Fe(CN)_6]$,它的三水合物 $K_4[Fe(CN)_6]$ •3 H_2O 是黄色晶体,用于检验 Fe^{3+} ,产生名为普鲁士蓝的深蓝色沉淀,其化学式为 $KFe[Fe(CN)_6]$,反应的方程式为 $K^++Fe^{3+}+[Fe(CN)_6]^4=KFe[Fe(CN)_6]$,结构如下,铁原子位于立方体的每个顶点,氰根位于立方体的每一个边上。一半铁原子是 Fe^{2+} ,另一半铁原子是 Fe^{3+} ,每隔一个立方体在立方体中中心含有一个 K^+ 。



 π 键配位体环戊二烯离子 C_5H_5 -与 Fe^2 +形成的二茂铁[(C_5H_5) $_2Fe$]是一种夹心式结构的配位化合物,它是一种橙黄色晶体。

三氧化二铁具有 α 型和 γ 型两种不同的构型。 α 型是顺磁性的,而 γ 型是铁磁性的。在自然界存在的赤铁矿是 α 型。将硝酸铁或草酸铁加热,可制得 α 型 Fe_2O_3 。将 Fe_3O_4 氧化所得产物是 γ 型 Fe_2O_3 。 γ 型 Fe_2O_3 在 673 K 以上转变为 α 型。

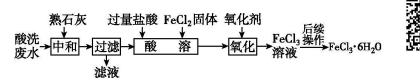
四氧化三铁(磁性氧化铁),具有磁性,是电的良导体,是磁铁矿的主要成分。将铁或氧化亚铁在空气或氧气中加热,或将水蒸气通过灼热的铁,都得到四氧化三铁,反应方程式为 3Fe $+2O_2$ $\stackrel{\triangle}{=}$ Fe $_3O_4$ 、6FeO $+O_2$ $\stackrel{\triangle}{=}$ 2Fe $_3O_4$ 、3Fe $+4H_2O$ $\stackrel{\triangle}{=}$ $+4H_2O$ $\stackrel{\triangle}{=}$ Fe $_3O_4$ $+4H_2$ \uparrow 。

无水三氯化铁是用氯气和铁粉在高温下直接合成的。它的熔点(555 K)、沸点(588 K)都比较低,它容易溶解在有机溶剂(如丙酮)中,这些事实说明它具有共价性,能借助升华法提纯。673 K 时,它的蒸气中有双聚分子 Fe₂Cl₆存在,其结构如图所示,氯原子在铁的周围呈四面体排布,在 1023 K 以上,双聚分子解离为单分子。三氯化铁易潮解,易溶于水,并形成含有 2-6 个分子水的水合物。其水合晶体一般为 FeCl₃•6H₂O,加热FeCl₃•6H₂O 晶体,则水解失去 HCl 而生成碱式盐。

用 SnCl₂来还原三价铁盐是分析化学中常用的反应,反应方程式为 2FeCl₃+SnCl₂= 2FeCl₂+SnCl₄。

赤血盐: 六氰合铁(III)酸钾,又名铁氰化钾,深红色晶体,化学式为 K_3 Fe(CN) $_6$],用于检验 Fe^{2+} ,产生名为滕氏蓝的深蓝色沉淀,其化学式为 $KFe[Fe(CN)_6]$,反应方程式为 $K^++Fe^{2+}+[Fe(CN)_6]^{3-}=KFe[Fe(CN)_6]$ \downarrow ,利用这一反应,可用赤血盐检验 Fe^{2+} 。滕氏蓝的组

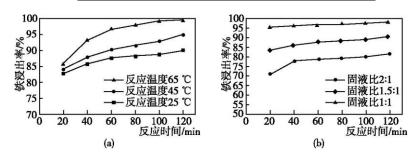
化学教育网 第 2 页 (共 6 页) www.chemedu.net


成与结构和普鲁士蓝的一样。

在酸性介质中高铁酸根离子(FeO_4^{2-})是一个强氧化剂,一般的氧化剂很难把 Fe^{3+} 氧化成 FeO_4^{2-} ;相反,在强碱性介质中, $Fe(OH)_3$ 却能被一些氧化剂如 NaClO 所氧化。在强碱性溶液中,用 NaClO 氧化 $Fe(OH)_3$,得紫红色高铁酸盐溶液,反应的方程式为 $2Fe(OH)_3$ +3 ClO^+ +4 OH^- =2 FeO_4^{2-} +3 Cl^+ 5 H_2O 。将 Fe_2O_3 、 KNO_3 和 KOH 混合并加热共融,生成紫红色高铁酸钾,反应的方程式为 Fe_2O_3 +3 KNO_3 +4KOH=2 K_2FeO_4 +3 KNO_2 +2 H_2O 。在高铁酸盐溶液中加入氯化钡会析出不溶的 $BaFeO_4$ • H_2O ,它和硫酸钡是类似的化合物。将溶液酸化时, FeO_4^2 -迅速分解而转化成 Fe^{3+} ,反应的方程式为 $4FeO_4^2$ -+2 $0H^+$ = $4Fe^{3+}$ +3 O_2 ↑+1 $0H_2O$ 。

二、精讲精练

1. 金属蚀刻加工过程中,常用盐酸对其表面氧化物进行清洗,会产生酸洗废水。pH 在 1.5 左右的某酸洗废水中铁元素的质量分数约为 3%,其他金属元素如铜、镍、锌、铬浓度较低,工业上综合利用酸洗废水可制备三氯化铁。制备过程如下:

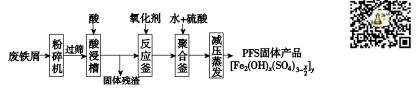


相关金属离子生成氢氧化物沉淀的 pH 如下表所示:

氢氧化物	Fe(OH) ₃	Cu(OH) ₂	Ni(OH) ₂	Zn(OH) ₂	Cr(OH) ₃	Fe(OH) ₂
开始沉淀 pH	1.5	4.2	7.1	5.4	4.3	6.5
沉淀完全 pH	3.2	6.7	8.8	8.4	5.6	8.3

回答下列问题:

(2) 酸溶处理中和后的滤渣,使铁元素浸出。滤渣和工业盐酸反应时,不同反应温度下铁浸出率随时间变化如图(a)所示,可知酸溶的最佳温度为_____。按照不同的固液比(滤渣和工业盐酸的投入体积比)进行反应时,铁浸出率随时间变化如图(b)所示,实际生产中固液比选择 1.5:1 的原因是


(3) 氧化时,可选氯酸钠或过氧化氢为氧化剂,若 100 L "酸溶" 所得溶液中 Fe^{2+} 含量为 1.2 $mol \bullet L^{-1}$,则需投入的氧化剂过氧化氢的质量为_____。

(4)氧化时,除可外加氧化剂外,也可采用惰性电极电解的方法,此时阴极的电极反应式为______,电解总反应的离子方程式是_____。

(5) 将得到的 FeCl₃溶液在 HCl 气氛中 、过滤、洗涤、干燥得 FeCl₃•6H₂O 晶体。

化学教育网 第 4 页 (共 6 页) www.chemedu.net

2. (2016 全国卷III•36) 聚合硫酸铁(PFS)是水处理中重要的絮凝剂。下图是以回收的废铁屑为原料制备 PFS 的一种工艺流程。

回答下列问题:

(1) 废铁屑主要为表面附有大量铁锈的铁,铁锈的主要成分为。粉碎过筛的目的
是。
(2)酸浸时最合适的酸是,写出铁锈与酸反应的离子方程式:
(3)反应釜中加入氧化剂的作用是,下列氧化剂中最合适的是(填
标号)。
a. $KMnO_4$ b. Cl_2 c. H_2O_2 d. HNO_3
(4) 聚合釜中溶液的 pH 必须控制在一定的范围。pH 偏小时 Fe ³⁺ 水解程度弱,pH 偏大时
则。
(5) 相对于常压蒸发,减压蒸发的优点是。
(6) 盐基度 B 是衡量絮凝剂絮凝效果的重要指标,定义式为 $B = \frac{3n \text{ (OH)}}{n \text{ (Fe)}}$ (n 为物质的量)。
为测量样品的 B 值,取样品 mg ,准确加入过量盐酸,充分反应,再加入煮沸后冷却的蒸馏
水,以酚酞为指示剂,用 $\operatorname{c} \operatorname{mol} \cdot \operatorname{L}^{-1}$ 的标准 NaOH 溶液进行中和滴定(部分操作略去,已排除
铁离子干扰)。到终点时消耗 NaOH 溶液 V mL。按上述步骤做空白对照试验,消耗 NaOH 溶
液 V_0 mL, 已知该样品中 Fe 质量分数 w,则 B 的表达式为。

参考答案

- 1. (1) $Ca(OH)_2+2HCl$ $CaCl_2+2H_2O$, $3Ca(OH)_2+2FeCl_3$ $2Fe(OH)_3+3CaCl_2$ $3.2 \le pH \le 4.2$
- (2) 65 ℃ 固液比大时,铁的浸出率低,固液比小时虽然浸出率高,但增加了盐酸的消耗,并且过稀的 FeCl₃ 溶液蒸发浓缩需消耗过多的能量,提高了成本
- (3) 2040 g
- $(4) \ 2H^{\scriptscriptstyle +} + 2e^{\textstyle -} \hspace{-1.5cm} \overline{} H_2 \uparrow \quad 2Fe^{2+} + 2H^{\scriptscriptstyle +} \overline{\underline{}} H_2 \uparrow + 2Fe^{3+}$

- (5) 蒸发浓缩、冷却结晶
- 2. (1) Fe₂O₃•xH₂O 选取细小颗粒,增大反应物接触面积,提高"酸浸"反应速率
- (2) H_2SO_4 $Fe_2O_3 \cdot xH_2O + 6H^+ = 2Fe^{3^+} + (x+3)H_2O$
- (3) 使 Fe 从+2 价变成+3 价 c
- (4) 形成氢氧化铁沉淀
- (5) 降低蒸发温度防止产物分解
- (6) $\frac{0.168c (V_0-V)}{mw}$